Net-WMS FP6-034691

NET WS B

Tnformation Society

lechnologies

Net-WMS

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Networked Businesses

D4.1 — A catalogue of generic placement constraint in a WMS

Due date of deliverable: 31-08-2007
Actual submission date: 17-10-2007

Start date of project: 1 September 2006 Duration: 36
months

Organisation name of lead contractor for this deliverable: EMN

Project co-funded by the European Commission within the Sixth Framework Programme

(2006-2009)

Net-WMS D1.4 1of5



Net-WMS FP6-034691

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: Net-WMS
Project Full Name: Towards integrating Virtual Reality and optimisation techniques
in a new generation of Networked businesses in Warehouse
Management Systems under constraints
Document id: D4.1
Document name: A catalogue of generic placement constraints in a WMS
Document type PU
(PU, INT, RE, CO)
Version: 1
Submission date: 17-10-2007
Authors: Nicolas Beldiceanu (EMN)
Organisation: Nicolas.Beldiceanu@emn.fr
Email:

Document type PU = public, INT = internal, RE = restricted, CO = confidential

ABSTRACT:

This deliverable is a description regarding the work on the catalogue of generic placement constraints in a
WMS.

KEYWORD LIST:

Net-WMS, WMS, constraint, catalogue.

Net-WMS D1.4 20f5




Net-WMS FP6-034691

MODIFICATION CONTROL

Version Date

Status

Author

1 10-17-2007

Final

Nicolas Beldiceanu (EMN)

Deliverable manager
Nicolas Beldiceanu (ARMINES)

List of Contributors
Nicolas Beldiceanu (ARMINES)
Mats Carlsson (SICS)
Julien Martin (INRIA)
Abder, Aggoun, KLS

List of Evaluators
Francois Fages (INRIA)
Abder, Aggoun (KLS OPTIM)
Philippe Rohou (ERCIM)

Net-WMS

D1.4

30f5




Net-WMS FP6-034691

1 Table of Contents

2. Summary
3. NetWMS Relevant constraints

4. Published paper about the main non-overlapping
constraint

Net-WMS D1.4 40of 5



Net-WMS FP6-034691

2 Summary

Within the existing catalogue of global constraints (see http://www.emn.fr/x-
info/sdemasse/gccat/index.html) we have identified the already existing global constraints that
are relevant within the NetWMS project. These constraints correspond to geometrical
constraints that can be used for expressing non-overlapping constraints (like diffnn), necessary
conditions for non-overlapping (cumulative, cumulatives), symmetry breaking constraints
(lex_chain_less), load balancing constraints (cumulative two d) or placement constraints

(place_in_pyramid).

Based on collaboration with partners of the projects (KLS, INRIA, SICS) we have introduced
within the catalogue of global constraints a restricted set of very general packing constraints
like the diffst and the visible constraints. We have illustrated the possible uses of these two
global constraints regarding different type of packing problems as well as regarding pallet
loading and pick up delivery problems. In addition to these generic constraints we have
introduced positioning constraints like contains sboxes, coveredby sboxes, covers sboxes,
disjoint_sboxes, inside_sboxes, meet_sboxes, non_overlap sboxes and overlap sboxes.

For further information look at the corresponding entries of the global constraint catalogue.
The relevant constraints are added in an annex of this document. A published paper at
CP2007 about the main non-overlapping constraint is also given as a second annex of this
document.

Net-WMS D1.4 50f5



502 PREDEFINED

4.64 contains_sboxes

DESCRIPTION LINKS
Origin Geometry, derived from [227]
Constraint contains_sboxes(K, DIMS, 0BJECTS, SBOXES)
Synonym(s) contains.
Type(s) VARIABLES : collection(v—dvar)
INTEGERS : collection(v—int)
NATURALS : collection(v—int)
Argument(s) K : int
DIMS : sint
OBJECTS : collection(oidfint7 sid—int,x — VARIABLES)
SBOXES : collection(sid—int,t — INTEGERS, 1 — NATURALS)
Restriction(s) required(VARIABLES, v)

|VARIABLES| =K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K

NATURALS.v > 0

K>0

DIMS > 0

DIMS <K
required(OBJECTS, [0id, sid, x])
OBJECTS.oid > 1
OBJECTS.oid < |0BJECTS|
OBJECTS.sid > 1
OBJECTS.sid < |SBOXES|
required(SBOXES, [sid, t,1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES)|

Holds if, for each pair of objects (O;, 0;), i < j, O; contains O; with respect to a set
of dimensions depicted by DIMS. O; and O; are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.

An object O; contains an object O; with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted boxes s; associated with Oj, there exists a shifted
box s; of O; such that s; contains s;. A shifted box s; contains a shifted box s; if and
only if, for all dimensions d € DIMS, (1) the start of s; in dimension d is strictly less
than the start of s; in dimension d and (2)the end of s; in dimension d is strictly less
than the end of s; in dimension d.

Purpose




20070622

2,{0,1},
oid—1 sid—1 x-—(1,1),
<oid2 sid—2 x—(2,2), >7
oid—3 sid—3 x-—(3,3
sid—1 t—(0,00 1-—¢(5,5),
<sid—2 t —(0,0) 1—(3,3>,>

sid—3 t—(0,0) 1—(1,1)

Example

503

Figure 4.133 shows the objects of the example. Since O; contains both O2 and

O3, and since O contains O3, the contains_sboxes constraint holds.

S1

S2

s3 |

(A) Shape of the (B) Shapes of the (C) Shape of the
first object second object third object

o] [ ]

- N W~ o
8]
@

1 2 3 4 5 6

(D) Three objects O1, O2 and O3, where O1
contains both O2 and O3, and O2 contains O3

Figure 4.133: The three objects of the example

Remark One of the eight relations of the Region Connection Calculus [227].

The constraint

contains_sboxes is a restriction of the original relation since it requires that each shifted

box of an object is contained by one shifted box of the other object.

See also coveredby_sboxes, covers_sboxes, disjoint_sboxes,

Key words constraint type: predefined constraint.

geometry: geometrical constraint, rcc8.

equal_sboxes,
inside_sboxes, meet_sboxes, non_overlap_sboxes, overlap_sboxes.



Origin

Constraint

Synonym(s)

Type(s)

Argument(s)

Restriction(s)

516

PREDEFINED

4.68 coveredby_sboxes

DESCRIPTION LINKS

Geometry, derived from [227]

coveredby_sboxes(K, DIMS, 0BJECTS, SBOXES)

coveredby.

VARIABLES
INTEGERS
NATURALS

K

DIMS
0BJECTS
SBOXES

collection(v—dvar)
collection(v—int)
collection(v—int)

int

sint

collection(oid—int,sid—int,x — VARIABLES)
collection(sid—int,t — INTEGERS, 1 — NATURALS)

required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K
NATURALS.v > 0

K>0
DIMS > 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid > 1

OBJECTS.oid < |OBJECTS|
OBJECTS.sid > 1

OBJECTS.sid < |SBOXES|
required(SBOXES, [sid, t, 1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES]|



Purpose

Example

Remark

See also

Key words

20070622

517

Holds if, for each pair of objects (0;,0;), i < j, O; is covered by O, with respect to
a set of dimensions depicted by DIMS. O; and O; are objects that take a shape among a
set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin
of the shape) with given sizes. More precisely, a shifted box is an entity defined by its
shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted
boxes sharing the same shape id. An object is an entity defined by its unique object
identifier oid, shape id sid and origin x.
An object O; is covered by an object O; with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted box s; of O;, there exists a shifted box s; of O; such
that:
e For all dimensions d € DIMS, (1) the start of s; in dimension d is less than or
equal to the start of s; in dimension d, and (2) the end of s; in dimension d is
less than or equal to the end of s; in dimension d.

e There exists a dimension d where, (1) the start of s; in dimension d coincide
with the start of s; in dimension d, or (2) the end of s; in dimension d coincide
with the end of s; in dimension d.

2,10, 1},

oid—1 sid—4 =x-—(1,1),
<oid2 sid — 2 x(2,2),>7
oid—3 sid—1 x—(2,3

sid—1 t—(0,00 1-¢(3,3),
sid—1 t—(3,0) 1-(2,2),
sid—2 t—(0,0) 1-—(2,2),
<sid—2 t —(2,0) 1—<1,1),>
sid—3 t—(0,0) 1-—(2,2),
sid—3 t—(2,1) 1-(1,1),
sid—4 t—(0,0) 1-—(1,1)

Figure 4.142 shows the objects of the example. Since O; is covered by both O3
and Os, and since O3 is covered by Os, the coveredby_sboxes constraint holds.

One of the eight relations of the Region Connection Calculus [227]. The constraint
coveredby_sboxes is a restriction of the original relation since it requires that each shifted
box of an object is covered by one shifted box of the other object.

contains_sboxes, covers_sboxes, disjoint_sboxes, equal_sboxes,
inside_sboxes, meet_sboxes, non_overlap_sboxes, overlap_sboxes.

constraint type: predefined constraint.

geometry: geometrical constraint, rcc8.



518

S3

S2

saf ]

(A) Shape of the
first object

(B) Shapes of the

second object

03

o7

N W B

02

-

1

(D) Three objects O1, O2 and O3,

2 3 4 5

S1

(C) Shape of the
third object

where O1 is covered by both O2 and O3,

and O2 is covered by O3

Figure 4.142: The three objects of the example

PREDEFINED



Origin

Constraint

Synonym(s)

Type(s)

Argument(s)

Restriction(s)

520

4.69 covers_sboxes

DESCRIPTION LINKS

Geometry, derived from [227]

covers_sboxes(K, DIMS, 0BJECTS, SBOXES)

covers.

VARIABLES
INTEGERS
NATURALS

K

DIMS
0BJECTS
SBOXES

collection(v—dvar)
collection(v—int)
collection(v—int)

int

sint

collection(oid—int,sid—int,x — VARIABLES)
collection(sid—int,t — INTEGERS, 1 — NATURALS)

required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K
NATURALS.v > 0

K>0
DIMS > 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid > 1

OBJECTS.oid < |OBJECTS|
OBJECTS.sid > 1

OBJECTS.sid < |SBOXES|
required(SBOXES, [sid, t, 1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES]|

PREDEFINED



Purpose

Example

Remark

See also

Key words

20070622 521

Holds if, for each pair of objects (O;,0;), i < j, O; covers O; with respect to a set
of dimensions depicted by DIMS. O; and O; are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object O; covers an object O; with respect to a set of dimensions depicted by DIMS
if and only if, for all shifted box s; of O}, there exists a shifted box s; of O; such that:
e For all dimensions d € DIMS, (1) the start of s; in dimension d is less than or
equal to the start of s; in dimension d, and (2) the end of s; in dimension d is
less than or equal to the end of s; in dimension d.

e There exists a dimension d where, (1) the start of s; in dimension d coincide
with the start of s; in dimension d, or (2) the end of s; in dimension d coincide
with the end of s; in dimension d.

2,{0,1},
oid—1 sid—1 x—(1,1),
<oid2 sid — 2 X<2,2>7>,
oid—3 sid—4 x—(2,3

sid—1 t—(0,0) 1—(3,3),
sid—1 t—(3,0) 1—(2,2),
sid—2 t—(0,0) 1—(2,2),
< sid—2 t—(2,0) 1—(1,1), >
sid—3 t—(0,0) 1—(2,2),
sid—3 t—(2,1) 1—(1,1),
sid—4 t—(0,0) 1—(1,1)

Figure 4.143 shows the objects of the example. Since O; covers both Oz and Os,
and since Oz covers O3, the covers_sboxes constraint holds.

One of the eight relations of the Region Connection Calculus [227]. The constraint
covers_sboxes is a relaxation of the original relation since it requires that each shifted
box of an object is covered by one shifted box of the other object.

contains_sboxes, coveredby_sboxes, disjoint_sboxes, equal_sboxes,
inside_sboxes, meet_sboxes, non_overlap_sboxes, overlap_sboxes.

constraint type: predefined constraint.

geometry: geometrical constraint, rcc8.



522

S3

S2

st sal |

(A) Shape of the (B) Shapes of the (C) Shape of the
first object second object third object

01'0#

02

1 2 3 4 5

- N W b

(D) Three objects O1, O2 and O3, where O1
covers both O2 and O3, and O2 covers O3

Figure 4.143: The three objects of the example

PREDEFINED



542 PREDEFINED

4.74 cumulative_two_d

DESCRIPTION LINKS
Origin Inspired by cumulative and diffn.
Constraint cumulative_two_d(RECTANGLES, LIMIT)

startl—dvar,
sizel—dvar,

lastl—dvar,
Argument(s) RECTANGLES : collection| start2—dvar,
size2—dvar,
last2—dvar,
height —dvar
LIMIT : int
Restriction(s) require_at_least(2, RECTANGLES, [startl, sizel, lastl])

require_at_least(2, RECTANGLES, [start2, size2, last2])
required(RECTANGLES, height)

RECTANGLES.sizel > 0

RECTANGLES.size2 > 0

RECTANGLES.height > 0

LIMIT >0

Consider a set R of rectangles described by the RECTANGLES collection. Enforces that
Purpose at each point of the plane, the cumulated height of the set of rectangles that overlap that
point, does not exceed a given limit.

startl —1 sizel —4 1lastl —4 start2 -3 size2 -3 1last2—-5 height —4,
Example startl —3 sizel —2 lastl—4 start2—-1 size2—-2 last2—2 height -2, 4
P startl —1 sizel —2 1lastl —2 start2—1 size2 -2 last2—2 height—3, /’

startl —4 sizel —1 lastl -4 start2—-1 size2—-1 last2—1 height—1

Part (A) of Figure 4.154 shows the 4 parallelepipeds of height 4, 2, 3 and 1 associ-
ated with the items of the RECTANGLES collection (parallelepipeds since each rectangle has
also a height). Part (B) gives the corresponding cumulated 2-dimensional profile, where
each number is the cumulated height of all the rectangles that contain the corresponding
region. The cumulative_two_d constraint holds since the heighest peak of the cumulated
2-dimensional profile does not exceed the upper limit 4 imposed by the last argument of
the cumulative_two_d constraint.

Usage The cumulative_two_d constraint is a necessary condition for the diffn constraint in 3
dimensions (i.e., the placement of parallelepipeds in such a way that they do not pairwise
overlap and that each parallelepiped has his sides parallel to the sides of the placement
space).

Algorithm A first natural way to handle this constraint would be to accumulate the
compulsory part [171] of the different rectangles in a quadtree [250]. To each leave of the
quadtree we associate the cumulated height of the rectangles containing the corresponding
region.



20000128 543

See also cumulative, diffn, bin_packing.

Key words characteristic of a constraint: derived collection.
constraint type: predefined constraint.
filtering: quadtree, compulsory part.

geometry: geometrical constraint.

<5 5 .

4 o4

3 o

4 L

2 ' 2.
2 1 : 3
1 2 3 4

A) B)

Figure 4.154: Two representations of a 2-dimensional cumulated profile



526 NARC, SELF; PRODUCT,SUCC

4.71 cumulative

DESCRIPTION LINKS GRAPH AUTOMATON
Origin (1]
Constraint cumulative(TASKS,LIMIT)
Argument(s) TASKS : collection(origin—dvar,duration—dvar, end—dvar, height—dvar)

LIMIT : int

Restriction(s) require_at_least(2, TASKS, [origin,duration, end])
required(TASKS, height)
TASKS.duration > 0
TASKS.origin < TASKS.end
TASKS.height > 0
LIMIT >0

Cumulative scheduling constraint or scheduling under resource constraints. Consider a
set 7 of tasks described by the TASKS collection. The cumulative constraint enforces
Purpose that at each point in time, the cumulated height of the set of tasks that overlap that
point, does not exceed a given limit. It also imposes for each task of 7 the constraint
origin + duration = end.

origin —1 duration—3 end—4 height —1,

origin —2 duration—9 end — 11 height —2,

Example < origin —3 duration —10 end —13 height —1, > ,8
origin — 6 duration —6 end —12 height —1,
origin —7 duration—2 end—9 height -3

Figure 4.146 shows the cumulated profile associated with the example. To each
task of the cumulative constraint corresponds a set of rectangles coloured with the
same colour: the sum of the lengths of the rectangles corresponds to the duration of
the task, while the height of the rectangles (i.e., all the rectangles associated with a
task have the same height) corresponds to the resource consumption of the task. The
cumulative constraint holds since at each point in time we don’t have a cumulated
resource consumption strictly greater than the upper limit 8 enforced by the last argument
of the cumulative constraint.

Algorithm [171, 100, 69, 182]. Within the context of linear programming, the reference [149] provides
a relaxation of the cumulative constraint.

A necessary condition for the cumulative constraint is obtained by stating a
disjunctive constraint on a subset of tasks 7 such that, for each pair of tasks of 7,
the sum of the two corresponding minimum heights is strictly greater than LIMIT. This can
be done by applying the following procedure:

e Let h be the smallest minimum height strictly greater than [ 25 | of the tasks of the
cumulative constraint. If no such task exists then the procedure is stopped without
stating any disjunctive constraint.



20000128 527

e Let 7}, denotes the set of tasks of the cumulative constraint for which the minimum
height is greater than or equal to h. By construction, the tasks of 7}, cannot overlap.
But we can eventually add one more task as shown by the next step.

e When it exists, we can add one task that does not belong to 7;, and such that its
minimum height is strictly greater than LIMIT — h. Again, by construction, this task
cannot overlap all the tasks of 7j,.

When the tasks are involved in several cumulative constraints more sophisticated meth-
ods are available for extracting disjunctive constraints [10, 9].

See also disjunctive, diffn, bin_packing, cumulative_product,
coloured_cumulative, cumulative_two_d, coloured_cumulatives, cumulatives,
cumulative_with_level_of_priority, cumulative_convex, calendar.

Key words characteristic of a constraint: core, automaton, automaton with array of counters.
complexity: sequencing with release times and deadlines.
constraint type: scheduling constraint, resource constraint, temporal constraint.
filtering: linear programming, compulsory part.
problems: producer-consumer.

puzzles: squared squares.

-

<9

amount of resource

1 2 3 45 6 7 8 9 1011 12 time

Figure 4.146: Resource consumption profile



528

Arc input(s)

Arc generator
Arec arity

Arec constraint(s)

Graph property(ies)

NARC, SELF; PRODUCT,SUCC

TASKS
SELF+—collection(tasks)
1

tasks.origin + tasks.duration — tasks.end

NARC= |TASKS)|

Arc input(s)
Arc generator
Arec arity

Arc constraint(s)

Graph class

Sets

Constraint(s) on sets

TASKS TASKS
PRODUCTcollection(tasksl, tasks2)
2

e tasksl.duration > 0
e tasks2.origin < tasksl.origin
e tasksl.origin < tasks2.end

e ACYCLIC
e BIPARTITE
e NO_LOOP

SUCC —
source,

variables — col ( VARIABLES—collection(var—dvar), )

[item(var — TASKS.height)]

sum_ctr(variables, <,LIMIT)

Graph model

Signature

The first graph constraint enforces for each task the link between its origin, its duration and
its end. The second graph constraint makes sure, for each time point ¢ corresponding to
the start of a task, that the cumulated heights of the tasks that overlap ¢ does not exceed the
limit of the resource.

Parts (A) and (B) of Figure 4.147 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. On the one hand, each source vertex
of the final graph can be interpreted as a time point. On the other hand the successors of
a source vertex correspond to those tasks that overlap that time point. The cumulative
constraint holds since for each successor set S of the final graph the sum of the heights of
the tasks in S does not exceed the limit LIMIT = 8.

Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewritt NARC = |TASKS| to NARC > |TASKS|. This leads to simplify
NARC to NARC.




529

20000128

TASKS

TASKS

(A)

TASKS

TASKS

(B)

Figure 4.147: Initial and final graph of the cumulative constraint



530 NARC, SELF; PRODUCT,SUCC

Automaton Figure 4.148 depicts the automaton associated with the cumulative constraint. To each
item of the collection TASKS corresponds a signature variable S; that is equal to 1.

{Cr_1=0}

1,
{C[ORI; ]=C[ORI, |+HEIGHT,,
{C[END; ]=C[END; | ~HEIGHT; }

arith_sliding(C,<=,LIMIT)

Figure 4.148: Automaton of the cumulative constraint



600 NARC, SELF; NARC, CLIQUE ()

4.89 diffn

DESCRIPTION LINKS GRAPH
Origin [27]
Constraint diffn(ORTHOTOPES)
Synonym(s) disjointl, disjoint2.
Type(s) ORTHOTOPE : collection(ori—dvar,siz—dvar,end—dvar)
Argument(s) ORTHOTOPES : collection(orth — ORTHOTOPE)
Restriction(s) |ORTHOTOPE| > 0

require_at_least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0

ORTHOTOPE.ori < ORTHOTOPE.end
required(ORTHOTOPES, orth)
same_size(ORTHOTOPES, orth)

Generalised multi-dimensional non-overlapping constraint: Holds if, for each pair of
Purpose orthotopes (O1,O2), O1 and Oz do not overlap. Two orthotopes do not overlap if there
exists at least one dimension where their projections do not overlap.

orth — (ori — 2 siz —2 end —4,0ri — 1 siz — 3 end — 4),
Example < orth — (ori —4 siz — 4 end — 8,0ri — 3 siz — 3 end — 6), >
orth — (ori — 9 siz — 2 end — 11,0ri — 4 siz — 3 end — 7)
Figure 4.183 represents the respective position of the three rectangles of the exam-
ple. The co-ordinates of the leftmost lowest corner of each rectangle are stressed in bold.
The diffn constraint holds since the three rectangles do not overlap.
6
5
4
3
2
1 . . . . . .
1 2 3 4 5 6 7 8 9 10
Figure 4.183: The three rectangles of the example
Usage The diffn constraint occurs in placement and scheduling problems. It was for instance

used for scheduling problems where one has to both assign each non-preemptive task to
a resource and fix its origin so that two tasks, which are assigned to the same resource,
do not overlap. A practical application from the area of the design of memory-dominated
embedded systems [272] can be found in [273]. Together with arithmetic and cumulative



Remark

Algorithm

20000128 601

constraints, the diffn constraint was used in [271] for packing more complex shapes such
as angles. Figure 4.184 illustrates the angle packing problem on an instance involving 10
angles taken from [271].

One other packing problem attributed to S. Golomb is to find the smallest square that
can contain the set of consecutive squares from 1 X 1 up to n X n so that these squares
do not overlap each other. A program using the diffn constraint was used to construct
such a table for n € {1,2,...,25,27,29,30} in [20]. Algorithms and lower bounds for
solving the same problem can also be respectively found in [165] and in [60]. In that paper,
Richard E. Korf also considers the problem of finding the minimum-area rectangle that can
contain the set of consecutive squares from 1 X 1 up ton X n.

When we have segments (respectively rectangles) the diffn constraint is referenced under
the name disjoint1 (respectively disjoint2) in SICStus Prolog [67].

It was shown in [275, page 137] that, finding out whether a non-overlapping constraint
between a set of rectangles has a solution or not is NP-hard. This was achieved by reduction
from sequencing with release times and deadlines.

Checking whether a diffn constraint for which all variables are fixed is satisfied or
not is related to the Klee’s measure problem: given a collection of axis-aligned mul-
ti-dimensional boxes, how quickly can one compute the volume of their union. Then the
diffn constraint holds if the volume of the union is equal to the sum of the volumes of the
different boxes.

A first possible method for filtering is to use constructive disjunction. The idea is to try
out each alternative of a disjunction (e.g., given two orthotopes o1 and oz that should not
overlap, we successively assume for each dimension that o, finishes before 02, and that
02 finishes before 01) and to remove values that were pruned in all alternatives. For the
two-dimensional case of diffn a second possible solution used in [247] is to represent
explicitly the two-dimensional domain of the origin of each rectangle by a quadtree [250]
and to accumulate all forbidden regions within this data structure. As for conventional
domain variables, a failure occurs when a two-dimensional domain get empty. A third
possible filtering algorithm based on sweep is described in [22].

The thesis of J. Nelissen [199] considers the case where all rectangles have the same
size and can be rotated from 90 degrees (i.e., the pallet loading problem.). For the
n-dimensional case of diffn a filtering algorithm handling the fact that two objects do
not overlap is given in [30].

Extensions of the non-overlapping constraint to polygons and to more complex shapes
are respectively described in [30] and in [243]. Specialised propagation algorithms for
the squared squares problem [59] (based on the fact that no waste is permitted) are given
in [123] and in [122].

The cumulative constraint can be used as a necessary condition for the diffn constraint.
Figure 4.186 illustrates this point for the two-dimensional case. A first (respectively sec-
ond) cumulative constraint is obtained by forgetting the y-co-ordinate (respectively the
z-co-ordinate) of the origin of each rectangle occurring in a diffn constraint. Parts (B)
and (C) respectively depict the cumulated profiles associated with the projection of the
rectangles depicted by part (A) on the « and y axes. The cumulative constraint is a nec-
essary but not sufficient condition for the two-dimensional case of the diffn constraint.
Figure 4.187 illustrates this point on an example taken from [52] where one has to place
the 8 rectangles R1, R2, R3, R4, R5, R6, R7, R8 of respective size 5 x 2, 8 x 2,6 x 1,



602 NARC, SELF; NARC, CLIQUE ()

- N W 00 O N 0 ©

12345678 9
Figure 4.184: A solution for the angle packing problem of items Al = [2,4,3,
1,2,5

1]
A2 =[2,2,1,3],A3 = [1,3,3,2], A4 = [2,1,4,3], A5 = [1,7,2,2], A6 = [1,2,5,5],
A7 =[6,2,2,3],A8 = [4,2,2,1], A9 = [3,1,1,4],A10 = [3,2,1,1].

Figure 4.185: A hard instance from [199, page 165]: A solution for packing 99 rectan-
gles of size 5 x 9 into a rectangle of size 86 x 52



20000128 603

y

- N W A O

5x1,2x1,3x1,2x2and 1 x 2 in a big rectangle of size 12 x 4. As shown by
Figure 4.187 there is a cumulative solution where RS is splitted in two parts but M. Hujter
proves in [151] that their is no solution where no rectangle is splitted.

A YA

B Q).
R3 |- :

(2) ;

R2

m R1

R1

R1

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Y

1 2 3 4 5 6 7 8 9 10

X

Figure 4.186: Looking from the perspective of the cumulative constraint in a two-di-
mensional rectangles placement problem

R1

N W A

R5

R2

—_

1 2 3 4 5 6 7 8 9 10 11 12
Figure 4.187: Illustrating the necessary but not sufficient placement condition

In the context of n parallelepipeds that have to be packed [127, 179] within a box of sizes
X XY x Z one can proceed as follows for stating three cumulative constraints. The 7'
(¢ € [1,n]) parallelepiped is described by the following attributes:

e oz;, 0y;, 0z; (i € [1,n]) the co-ordinates of its origin on the x, y and z-axes.

e sz, sy, sz; (i € [1,n]) its sizes on the z, y and z-axes.

e pz,;, py;. pz; (i € [1,n]) the surfaces of its projections on the planes yz, xz, and zy
respectively equal to sy, sz;, sz;52;, and ST;sy,.

e v; its volume (equal to sz;sy;5z:).

For the placement of n parallelepipeds we get the following necessary conditions that re-
spectively correspond to three cumulative constraints on the planes yz, xz, and xy:



Used in

See also

Key words

604

NARC, SELF; NARC, CLIQUE ()

Vi € [17X] : Zj|oz_7§i§oz]-+szj—lpz]' S Yz
Vi e [LY] : Ej\angigayj+syj—l Py, <Xz
Viel[l,Z]: Y _1p2; XY

jlozj<i<ozj+szj
diffn_column, diffn_include, place_in_pyramid.

diffst, cumulative, orth link ori_siz_end, two_orth_do_not_overlap,
calendar.

characteristic of a constraint: core.
complexity: sequencing with release times and deadlines.
constraint type: decomposition.

filtering: Klee measure problem, sweep, quadtree, compulsory part,
constructive disjunction.

geometry: geometrical constraint, orthotope, polygon, non-overlapping.
problems: pallet loading.

puzzles: squared squares.



20000128 605

Arc input(s)

Arc generator
Arec arity

Arc constraint(s)

Graph property(ies)

ORTHOTOPES

SELF+—collection(orthotopes)

orth_link ori_siz_end(orthotopes.orth)

NARC= |ORTHOTOPES |

Arc input(s)

Arc generator
Arec arity

Arc constraint(s)

Graph property(ies)

ORTHOTOPES

CLIQUE(#) +collection(orthotopesl, orthotopes2)

two_orth_donot_overlap(orthotopesl.orth, orthotopes2.orth)

NARC= |ORTHOTOPES | * |ORTHOTOPES | — |ORTHOTOPES|

Graph model

The diffn constraint is expressed by using two graph constraints:

e The first graph constraint enforces for each dimension and for each orthotope the link
between the corresponding ori, siz and end attributes.

e The second graph constraint imposes each pair of distinct orthotopes to not overlap.

Parts (A) and (B) of Figure 4.188 respectively show the initial and final graph associated

with the second graph constraint of the Example slot. Since we use the NARC graph
property, the arcs of the final graph are stressed in bold.

ORTHOTOPES

NARC=6
(A) (B)

Figure 4.188: Initial and final graph of the diffn constraint



Signature

606

NARC, SELF; NARC, CLIQUE ()

Since [ORTHOTOPES| is the maximum number of vertices of the final graph of the first graph
constraint we can rewritt NARC = |ORTHOTOPES| to NARC > |0RTHOTOPES|. This
leads to simplify NARC to NARC.

Since we use the CLIQUE(#) arc generator on the ORTHOTOPES collection,
|ORTHOTOPES| - |ORTHOTOPES| — |ORTHOTOPES| is the maximum number of ver-
tices of the final graph of the second graph constraint. Therefore we can rewrite
NARC = |ORTHOTOPES|- |ORTHOTOPES| — |ORTHOTOPES| to NARC > |ORTHOTOPES| -
|ORTHOTOPES| — |ORTHOTOPES|. Again, this leads to simplify NARC to NARC.




Origin

Constraint

Type(s)

Argument(s)

Restriction(s)

612

4.92 diffst

DESCRIPTION LINKS

Generalisation of diffn.

diffst(K, DIMS, OBJECTS, SBOXES)

VARIABLES : collection(v—dvar)

INTEGERS : collection(v—int)
NATURALS : collection(v—int)
K : int
DIMS : sint
oid—int,
sid—dvar,

x — VARIABLES,

start—dvar,

duration—dvar,

end—dvar

SBOXES : collection(sid—int,t — INTEGERS, 1 — NATURALS)

OBJECTS : collection

required(VARIABLES, v)
|VARIABLES| =K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K

NATURALS.v > 0

K>0

DIMS > 0

DIMS <K

required(OBJECTS, [0id, sid, x])
require_at_least(2, 0BJECTS, [start,duration, end])
OBJECTS.oid > 1

OBJECTS.oid < |OBJECTS|
OBJECTS.sid > 1

OBJECTS.sid < |SBOXES)|
OBJECTS.duration > 0
required(SBOXES, [sid, t, 1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES]|

PREDEFINED



Purpose

Example

20060919 613

Holds if (1) the difference between the end in time and the start in time of each object is
equal to its duration in time, and if (2) for each pair of objects (O;, O;), i < j, O; and
O; do not overlap with respect to a set of dimensions depicted by DIMS as well as to the
time axis. O; and O; are objects that take a shape among a set of shapes. Each shape is
defined as a finite set of shifted boxes, where each shifted box is described by a box in
a K-dimensional space at a given offset (from the origin of the shape) with given sizes.
More precisely, a shifted box is an entity defined by its shape id sid, shift offset t, and
sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape
id. An object is an entity defined by its unique object identifier oid, shape id sid and
origin x.

An object O; does not overlap an object O; with respect to a set of dimensions depicted
by DIMS as well as to the time axis if and only if:

e The start in time of O; is greater than or equal to the end in time of O;.

e The start in time of Oj is greater than or equal to the end in time of O;.

e For all shifted box s; associated with O; and for all shifted box s; associated
with O; there exists a dimension d € DIMS such that the start of s; in dimension
d is greater than or equal to the end of s; in dimension d, or the start of s; in
dimension d is greater than or equal to the end of s; in dimension d.

2,{0,1},
oid—1 sid—1 x—(1,2) start—0 duration—1 end—1,
<oid2 sid—5 x—(2,1) start —0 duration—1 end—1, >7
0id—3 sid—8 x—(4,1) start —0 duration—1 end—1
sid—1 t—(0,0) 1-(21),
sid—1 t—(0,1) 1—(1,2),
sid—1 t—(1,2) 1—(3,1),
sid—2 t—(0,0) 1-(3,1),
sid—2 t—(0,1) 1—(1,3),
sid—2 t—(2,1) 1-(1,1),
sid—3 t—(0,0) 1—(2,1),
sid—3 t—(1,1) 1-—(1,2),
sid—3 t—(-2,2) 1-(3,1),
sid—4 t—{0,0) 1-(3,1),
sid—4 t—(0,1) 1-(1,1),
sid—4 t—(2,1) 1-(1,3),
sid—5 t—(0,0) 1-—(2,1),
sid—5 t—(1,1) 1—(1,1),
sid—5 t—(0,2) 1-—(2,1),
sid—6 t—(0,0) 1—(3,1),
sid—6 t—(0,1) 1—(1,1),
sid— 6 t—(2,1) 1-—(1,1),
sid—7 t—(0,0) 1-(3,2),
sid—8 t—(0,0) 1—(2,3)

Parts (A), (B) and (C) of Figure 4.191 respectively represent the potential shapes
associated with the three objects of the example. Part (D) shows the position of the three
objects of the example, where the first, second and third objects were respectively assigned
shapes 1, 5 and 8. The coordinates of the leftmost lowest corner of each object are stressed
in bold. The diffst constraint holds since the three objects do not overlap: even if the



614 PREDEFINED

time intervals associated with each object overlap (i.e., they are in fact identical), their
corresponding shapes do not overlap (i.e., see part (D) if Figure 4.191).

g 5 S8
S ] | =] @
% - || ke S6 o
o S2 S4 S ()
©
® | || Q L =
= b £
2 2 2
s " ! S 8
2 g = 2
Q Q. Q
8 HEREE g | 8 S’
- st s3 = 5
S 8 8
2 N H £ & 2
o H_ o} Q
IS IS I
(A) (B) (©)
4 |81 A possible placement where
3 object 1 is assigned shape S1 and
2 S5 object 2 is assigned shape S5 and
1 object 3 is assigned shape S8
1 2 3 4 5 (D)

Figure 4.191: The three objects of the example

Usage The diffst constraint allows to model directly a large number of placement problems.
Figure 4.192 sketches ten typical use of the diffst constraint:

e The first case (A) corresponds to a non-overlapping constraint among three segments.

e The second, third and fourth cases (B,C,D) correspond to a non-overlapping con-
straint between rectangles where (B) and (C) are special cases where the sizes of all
rectangles in the second dimension are equal to 1; this can be interpreted as a ma-
chine assignment problem where each rectangle corresponds to a non-pre-emptive
task that has to be placed in time and assigned to a specific machine so that no two
tasks assigned to the same machine overlap in time. In Part (B) the duration of each
task is fixed, while in Part (C) the duration depends on the machine to which the task
is actually assigned. This dependence can be expressed by the element constraint,
which specifies the dependence between the shape variable and the assignment vari-
able of each task.

e The fifth case (E) corresponds to a non-overlapping constraint between rectangles
where each rectangle can have two orientations. This is achieved by associating with
each rectangle two shapes of respective sizes [ - h and h - [. Since their orientation is
not initially fixed, an element_lesseq constraint can be used for enforcing the three
rectangles to be included within the bounding box defined by the origin’s coordinates
1,1 and sizes 8, 3.



Algorithm

See also

Key words

20060919 615

e The sixth case (F) corresponds to a non-overlapping constraint between more com-
plex objects where each object is described by a given set of rectangles.

e The seventh case (G) describes a rectangle placement problem where one has to first
assign each rectangle to a strip so that all rectangles that are assigned to the same
strip do not overlap.

e The eighth case (H) corresponds to a non-overlapping constraint between paral-
lelepipeds.

e The ninth case (I) can be interpreted as a non-overlapping constraint between paral-
lelepipeds that are assigned to the same container. The first dimension corresponds
to the identifier of the container, while the next three dimensions are associated with
the position of a parallelepiped inside a container.

e Finally the tenth case (J) describes a rectangle placement problem over three consec-
utive time-slots: rectangles assigned to the same time-slot should not overlap in time.
We initially start with the three rectangles 1, 2 and 3. Rectangle 3 is no more present
at instant 2 (the arrow | within rectangle 3 at time 1 indicates that rectangle 3 will
disappear at the next time-point), while rectangle 4 appears at instant 2 (the arrow T
within rectangle 4 at time 2 denotes the fact that the rectangle 4 appears at instant 2).
Finally rectangle 2 disappears at instant 3 and is replaced by rectangle 5.

A sweep-based filtering algorithm for this constraint is described in [25]. Unlike previous
sweep filtering algorithms which move a line for finding a feasible position for the origin of
an object, this algorithm performs a recursive traversal of the multidimensional placement
space. It explores all points of the domain of the origin of the object under focus, one by
one, in increasing lexicographic order, until a point is found that is not infeasible for any
non-overlapping constraints. To make the search efficient, instead of moving each time
to the successor point, the search is arranged so that it skips points that are known to be
infeasible for some non-overlapping constraint.

visible, non_overlap_sboxes, diffn.

constraint type: decomposition.
filtering: sweep.
geometry: geometrical constraint, non-overlapping.

puzzles: squared squares.



616

1 2 3
(A) 123 456 7 8
(&)
3 [ L 12 1 !
(B) 2 T I SO I N
1 1\ 1 L1 LSI
123 456 7 8
3 [ L 12 1 !
©) 2 TR I S B B (H)
1 1\ 1 L1 le
123 45678
)

)

PREDEFINED

- N W =N W
T

- N W A~ O

123123

time=1 time=2 time=3

- N W s

! !
123123123

Figure 4.192: Ten typical examples of use of the diffst constraint (ground instances)



626 PREDEFINED

4.96 disjoint_sboxes

DESCRIPTION LINKS
Origin Geometry, derived from [227]
Constraint disjoint_sboxes(K,DIMS, 0BJECTS, SBOXES)
Synonym(s) disjoint.
Type(s) VARIABLES : collection(v—dvar)
INTEGERS : collection(v—int)
NATURALS : collection(v—int)
Argument(s) K : int
DIMS . sint
OBJECTS : collection(oid—int,sid—int,x — VARIABLES)
SBOXES : collection(sid—int,t — INTEGERS,1 — NATURALS)
Restriction(s) required(VARIABLES, v)

|VARTABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K

NATURALS.v > 0

K> 0

DIMS > 0

DIMS <K
required(OBJECTS, [0id, sid, x])
OBJECTS.oid > 1
OBJECTS.oid < |0BJECTS|
OBJECTS.sid > 1
OBJECTS.sid < |SBOXES|
required(SBOXES, [sid, t,1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES)|

Holds if, for each pair of objects (O;, O;), i # j, O; and O, are disjoint with respect to
a set of dimensions depicted by DIMS. O; and O; are objects that take a shape among a
set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin
of the shape) with given sizes. More precisely, a shifted box is an entity defined by its
shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted
Purpose boxes sharing the same shape id. An object is an entity defined by its unique object
identifier oid, shape id sid and origin x.

Two objects O; and object O; are disjoint with respect to a set of dimensions depicted
by DIMS if and only if for all shifted box s; associated with O; and for all shifted box s;
associated with O; there exists at least one dimension d € DIMS such that (1) the origin
of s; in dimension d is strictly greater than the end of s; in dimension d, or (2) the
origin of s; in dimension d is strictly greater than the end of s; in dimension d.




Example

Remark

See also

Key words

2,{0,1},
oid—1 sid—1 =x-—
< 0oid—2 sid—2 x—
oid — 3 i
sid—1 t—(0,0) 1
sid—2 t—(0,0) 1
sid—2 t—(1,0) 1
sid—2 t—(0,2) 1
sid—3 t—(0,0) 1
sid—3 t—(0,1) 1
sid—3 t—(2,1) 1
sid—4 t—(0,0) 1

Figure 4.198 shows the objects of the example.

disjoint the disjoint_sboxes constraint holds.

B

(A) Shape of the

first object

- N W s

ais

S2

(B)

L]
Ml

Shapes of the
second object

| .
1

2 3 4 5

627

Since these objects are pairwise

sal ]

(C) Shape of the
third object

(D) Three mutually disjoint objects

Figure 4.198: The three mutually disjoint objects of the example

One of the eight relations of the Region Connection Calculus [227].

contains_sboxes,

coveredby_sboxes,

covers_sboxes,

inside_sboxes, meet_sboxes, non_overlap_sboxes, overlap_sboxes.

constraint type: predefined constraint.

geometry: geometrical constraint, rcc8.

equal_sboxes,



Origin
Constraint
Synonym(s)
Type(s)

Argument(s)

Restriction(s)

Purpose

786

PREDEFINED

4.143 inside_sboxes

DESCRIPTION LINKS
Geometry, derived from [227]

inside_sboxes(X,DIMS, 0BJECTS, SBOXES)
inside.

VARIABLES : collection(v—dvar)

INTEGERS : collection(v—int)

NATURALS : collection(v—int)

K : int

DIMS . sint

OBJECTS : collection(oid—int,sid—int,x — VARIABLES)
SBOXES : collection(sid—int,t — INTEGERS,1 — NATURALS)

required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K

NATURALS.v > 0

K> 0

DIMS > 0

DIMS < K
required(OBJECTS, [oid, sid, x])
OBJECTS.oid > 1
OBJECTS.oid < |0BJECTS|
OBJECTS.sid > 1
OBJECTS.sid < |SBOXES)|
required(SBOXES, [sid, t,1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES]|

Holds if, for each pair of objects (O;, 0;), i < j, O; is inside O, with respect to a set
of dimensions depicted by DIMS. O; and O; are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.

An object O; is inside an object O; with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted boxes s; associated with O;, there exists a shifted
box s; of O; such that s; is inside s;. A shifted box s; is inside a shifted box s; if and
only if, for all dimensions d € DIMS, (1) the start of s; in dimension d is strictly less
than the start of s; in dimension d, and (2) the end of s; in dimension d is strictly less
than the end of s; in dimension d.




20070622 787
2,40, 1},
oid—1 sid—1 x-—(1,1),
< 0id—2 sid—2 x—(2,2), >7
Example 0id—3 sid—3 x—(3,3)
sid—1 t—(0,00 1-—¢(1,1),
< sid—2 t—(0,0) 1-¢(3,3), >
sid—3 t—(0,0) 1-—¢(5,5)
Figure 4.299 shows the objects of the example. Since O; is inside O2 and O3, and
since Os is also inside O3, the inside_sboxes constraint holds.
S3
S2
st ]
(C) Shape of the (B) Shapes of the (A) Shape of the
first object second object third object
5|03 | |
4 _02
sl
2
1 [
1 2 3 45 6
(D) Three objects O1, 02 and O3, where O1
is inside O2 and O3, and O2 is inside O3
Figure 4.299: The three objects of the example
Remark One of the eight relations of the Region Connection Calculus [227]. The constraint
inside_sboxes is a restriction of the original relation since it requires that each box of
an object is contained by one box of the other object.
See also contains_sboxes, coveredby_sboxes, covers_sboxes, disjoint_sboxes,
equal_sboxes, meet_sboxes, non_overlap_sboxes, overlap_sboxes.
Key words constraint type: predefined constraint.

geometry: geometrical constraint, rcc8.



Origin
Constraint
Usual name
Type(s)
Argument(s)

Restriction(s)

Purpose

Example

Usage

Algorithm

See also

Key words

NARC, PATH

4.167 lex_chain_less

DESCRIPTION LINKS GRAPH
[65]

lex_chain_less(VECTORS)

lex_chain

VECTOR : collection(var—dvar)

VECTORS : collection(vec — VECTOR)

required(VECTOR, var)

required(VECTORS, vec)
same_size(VECTORS, vec)

For each pair of consecutive vectors VECTOR; and VECTOR;+1 of the VECTORS collec-
tion we have that VECTOR; is lexicographically strictly less than VECTOR; ;. Given
two vectors, X and YV of n components, (Xo,...,Xn—1) and (Yo,...,Yn_1), X
is lexicographically strictly less than Y if and only if Xo < Yp or Xo = Yy and
(X1,...,Xn—1) is lexicographically strictly less than (Y1, ..., Y,_1).

vec — (5,2,3,9),
< vec — (5,2,6,2), >
vec — (5,2,6,3)

The lex_chain_less constraint holds since:
e The first vector (5,2, 3,9) of the VECTORS collection is lexicographically strictly less
than the second vector (5, 2, 6, 2) of the VECTORS collection.

e The second vector (5,2, 6, 2) of the VECTORS collection is lexicographically strictly
less than the third vector (5, 2, 6, 3) of the VECTORS collection.

This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

A filtering algorithm achieving arc-consistency for a chain of lexicographical constraints is
presented in [65].

lex_between, lex_chain_ lesseq, 1lex_less, lex_lesseq, lex_greater,
lex_greatereq.

characteristic of a constraint: vector.
constraint type: decomposition, order constraint.
filtering: arc-consistency.

symmetry: symmetry, matrix symmetry, lexicographic order.



20030820 855

Arc input(s) VECTORS

Arc generator PATHw—collection(vectorsl, vectors2)
Arc arity 2

Arc constraint(s) lex_less(vectorsl.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| — 1

Graph model Parts (A) and (B) of Figure 4.335 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final graph
are stressed in bold. The lex_chain less constraint holds since all the arc constraints of
the initial graph are satisfied.

VECTORS

NARC=2
(A) (B)

Figure 4.335: Initial and final graph of the 1ex_chain_less constraint
Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of

the initial graph is equal to [VECTORS| — 1. For this reason we can rewritt NARC =
|[VECTORS| — 1 to NARC > |VECTORS| — 1 and simplify NARC to NARC.




Origin

Constraint

Synonym(s)

Type(s)

Argument(s)

Restriction(s)

918

4.185 meet_sboxes

DESCRIPTION LINKS

Geometry, derived from [227]

meet_sboxes(K, DIMS, 0BJECTS, SBOXES)

meet.

VARIABLES
INTEGERS
NATURALS

K

DIMS
0BJECTS
SBOXES

collection(v—dvar)
collection(v—int)
collection(v—int)

int

sint

collection(oid—int,sid—int,x — VARIABLES)
collection(sid—int,t — INTEGERS, 1 — NATURALS)

required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K
NATURALS.v > 0

K>0
DIMS > 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid > 1

OBJECTS.oid < |OBJECTS|
OBJECTS.sid > 1

OBJECTS.sid < |SBOXES|
required(SBOXES, [sid, t, 1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES]|

PREDEFINED



Purpose

Example

Remark

See also

Key words

20070622 919

Holds if, for each pair of objects (O;, O;), i # j, O; and O; meet with respect to a set
of dimensions depicted by DIMS. Each shape is defined as a finite set of shifted boxes,
where each shifted box is described by a box in a K-dimensional space at a given offset
(from the origin of the shape) with given sizes. More precisely, a shifted box is an entity
defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the
union of shifted boxes sharing the same shape id. An object is an entity defined by its
unique object identifier oid, shape id sid and origin x.
Two objects O; and object O; meet with respect to a set of dimensions depicted by
DIMS if and only if the two following conditions hold:
e For all shifted box s; associated with O; and for all shifted box s; associated with
O; there exists a dimension d € DIMS such that (1) the start of s; in dimension
d is greater than or equal to the end of s; in dimension d, or (2) the start of s; in
dimension d is greater than or equal to the end of s; in dimension d (i.e., there is
no overlap between the shifted box of O; and the shifted box of O;).

e There exists a shifted box s; of O; and there exists a shifted box s; of O; such
that for all dimensions d (1) the end of s; in dimension d is greater than or equal
to the start of s; in dimension d, and (2) the end of s; in dimension d is greater
than or equal to the start of s; in dimension d (i.e., at least two shifted box of O;
and Oj are in contact).

1,{0, 1},
oid—1 sid—1 x-—(3,2),

<oid—2 sid — 2 x—(4,1>,>7
oid—3 sid—4 x—(3,4)
sid—1 t—(0,0) 1—(1,2),
sid—2 t—(0,0) 1—(1,1),
sid—2 t—(1,0) 1-—(1,3),
sid—2 t—(0,2) 1—(1,1),
sid—3 t—(0,00 1-—¢(3,1),
sid—3 t—(0,1) 1-—(1,1),
sid—3 t—(2,1) 1—(1,1),
sid—4 t—(0,0) 1-—(1,1)

Figure 4.366 shows the objects of the example. Since all the pairs of objects meet
the meet_sboxes constraint holds.

One of the eight relations of the Region Connection Calculus [227].

contains_sboxes, coveredby_sboxes, covers_sboxes, disjoint_sboxes,
equal_sboxes, inside_sboxes, non_overlap_sboxes, overlap_sboxes.

constraint type: predefined constraint.

geometry: geometrical constraint, rcc8.



920

L

S2
S1

(A) Shape of the
first object

L]
-

(B) Shapes of the
second object

- N W s

o3
¢ ot
' 02
L m
1 2 3 4 5

sal |

(C) Shape of the
third object

(D) Three objects for which each pair of objects meet

Figure 4.366: The three objects of the example

PREDEFINED



974 PREDEFINED

4.204 non_overlap_sboxes

DESCRIPTION LINKS
Origin Geometry, derived from [25]
Constraint non_overlap_sboxes(K,DIMS, 0BJECTS, SBOXES)
Synonym(s) non_overlap, non_overlapping.
Type(s) VARIABLES : collection(v—dvar)
INTEGERS : collection(v—int)
NATURALS : collection(v—int)
Argument(s) K : int
DIMS . sint
OBJECTS : collection(oid—int,sid—int,x — VARIABLES)
SBOXES : collection(sid—int,t — INTEGERS, 1 — NATURALS)
Restriction(s) required(VARIABLES, v)

|VARIABLES| =K
required(INTEGERS, v)

|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K
NATURALS.v > 0

K>0

DIMS >0

DIMS < K

required(OBJECTS, [0id, sid, x])
OBJECTS.oid > 1

OBJECTS.oid < |0BJECTS|
OBJECTS.sid > 1

OBJECTS.sid < |SBOXES|
required(SBOXES, [sid, t,1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES]|

Holds if, for each pair of objects (O;, O;), ¢ < j, O; and O; do not overlap with respect
to a set of dimensions depicted by DIMS. O; and O; are objects that take a shape among
a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin
of the shape) with given sizes. More precisely, a shifted box is an entity defined by its
shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted
Purpose boxes sharing the same shape id. An object is an entity defined by its unique object
identifier oid, shape id sid and origin x.

An object O; does not overlap an object O; with respect to a set of dimensions depicted
by DIMS if and only if, for all shifted box s; associated with O; and for all shifted box
s; associated with Oj, there exists a dimension d € DIMS such that the start of s; in
dimension d is greater than or equal to the end of s; in dimension d, or the start of s; in
dimension d is greater than or equal to the end of s; in dimension d.




20070622 975

1,{0, 1},
oid—1 sid—1 x-—(4,1),
<oid2 sid — 2 }((2,2>,>7
oid—3 sid—4 x—(5,4)
sid—1 t—(0,00 1-—¢(1,1),
sid—1 t—(1,0) 1-—(1,3),
Example sid—1 t—(0,2) 1—(1,1),
sid—2 t—(0,0) 1-—¢(3,1),
sid—2 t—(0,1) 1-—(1,1),
sid—2 t—(2,1) 1-—(1,1),
sid—3 t—(0,0) 1-—(1,2),
sid—4 t—(0,0) 1-—(1,1)
Figure 4.399 shows the objects of the example. Since O; and O2 do not overlap,
since O1 and O3 do not overlap, and since O2 and Oz also do not overlap, the
non_overlap_sboxes constraint holds.
> I__[
S
S3
C s
(B) Shapes of the (A) Shape of the (C) Shape of the
first object second object third object
4| 1 |03
3| o2l
M r
1 2 3 4 5
(D) Three objects for which where O1 does not overlap 02
and O2 does not overlap O3
Figure 4.399: The three objects of the example
See also diffst, contains_sboxes, coveredby_sboxes, covers_sboxes, diffn,
disjoint_sboxes, equal_sboxes, inside_sboxes, meet_sboxes, overlap_sboxes.
Key words constraint type: predefined constraint.

geometry: geometrical constraint, non-overlapping.



1034 PREDEFINED

4.226 overlap_sboxes

DESCRIPTION LINKS
Origin Geometry, derived from [227]
Constraint overlap_sboxes (K, DIMS, 0BJECTS, SBOXES)
Synonym(s) overlap.
Type(s) VARIABLES : collection(v—dvar)
INTEGERS : collection(v—int)
NATURALS : collection(v—int)
Argument(s) K : int
DIMS : sint
OBJECTS : collection(oid—int,sid—int,x — VARIABLES)
SBOXES : collection(sid—int, t — INTEGERS, 1 — NATURALS)
Restriction(s) required(VARIABLES, v)

|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K

NATURALS.v > 0

K>0

DIMS > 0

DIMS < K
required(OBJECTS, [oid, sid, x])
OBJECTS.oid > 1
OBJECTS.oid < |0BJECTS|
OBJECTS.sid > 1
OBJECTS.sid < |SBOXES|
required(SBOXES, [sid, t,1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES)|

Holds if, for each pair of objects (O;, O;), i < j, O; overlaps O; with respect to a set
of dimensions depicted by DIMS. O; and O; are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.

An object O; overlaps an object O; with respect to a set of dimensions depicted by
DIMS if and only if, there exists a shifted box s; associated with O; and there exists
a shifted box s; associated with O, such that (1) there exists a dimension d € DIMS
where the end of O; in dimension d is strictly greater than the start of O, in dimension d,
and (2) the end of O; in dimension d is strictly greater than the start of O; in dimension
d.

Purpose




20070622 1035
2,{0,1},
oid—1 sid—1 x-—(1,1),
< 0id—2 sid—2 x—(3,2), >7
Example oid—3 sid—3 x—(2,4)
sid—1 t—(0,0) 1-—(4,5),
< sid—2 t—(0,0) 1-¢(3,3), >
sid—3 t—(0,0) 1-—¢(2,1)
Figure 4.431 shows the objects of the example. Since O; overlaps both O2 and
O3, and since O3 overlaps O3, the overlap_sboxes constraint holds.
S
S2
s [0
(A) Shape of the (B) Shapes of the (C) Shape of the
first object second object third object
s| | [ [ ]
4| b o3 | | ]
3 02
2 (0]
T
1 2 3 4 5 6
(D) Three objects O1, O2 and O3, where O1
overlaps both 02 and O3, and O2 overlaps O3
Figure 4.431: The three objects of the example
Remark One of the eight relations of the Region Connection Calculus [227].
See also coveredby_sboxes, covers_sboxes, contains_sboxes, disjoint_sboxes,
equal_sboxes, inside_sboxes, meet_sboxes, non_overlap_sboxes.
Key words constraint type: predefined constraint.

geometry: geometrical constraint, rcc8.



1048 NARC, CLIQUE

4.232 place_in_pyramid

DESCRIPTION LINKS GRAPH
Origin N. Beldiceanu
Constraint place_in pyramid(ORTHOTOPES, VERTICAL_DIM)
Type(s) ORTHOTOPE : collection(ori—dvar,siz—dvar, end—dvar)
Argument(s) ORTHOTOPES : collection(orth — ORTHOTOPE)

VERTICAL.DIM : int

Restriction(s) |ORTHOTOPE| > 0
require_at_least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
ORTHOTOPE.ori < ORTHOTOPE.end
required(ORTHOTOPES, orth)
same_size(ORTHOTOPES, orth)
VERTICALDIM > 1
diffn(ORTHOTOPES)

For each pair of orthotopes (O1, O2) of the collection ORTHOTOPES, O and O2 do not
overlap (two orthotopes do not overlap if there exists at least one dimension where their
Purpose projections do not overlap). In addition, each orthotope of the collection ORTHOTOPES
should be supported by one other orthotope or by the ground. The vertical dimension is
given by the parameter VERTICAL_DIM.

orth — (ori — 1 siz — 3 end — 4,0ri — 1 siz — 2 end — 3},

orth — (ori — 1 siz — 2 end — 3, ori — 3 siz — 3 end — 6),
Example < orth — (ori — 5 siz — 6 end — 11, ori — 1 siz — 2 end — 3), > 9

orth — (ori — 5 siz —2 end — 7,0ri — 3 siz — 2 end — 5), ’
orth — (ori — 8 siz — 3 end — 11, ori — 3 siz — 2 end — 5)
orth — (ori — 8 siz — 2 end — 10, 0ri — 5 siz — 2 end — 7)

Figure 4.438 depicts the placement associated with the example, where the i*" item

of the ORTHOTOPES collection is represented by the rectangle Ri. The place_in_pyramid
constraint holds since the rectangles do not overlap and since rectangles R1, R2, R3, R4,
RS, and R6 are respectively supported by the ground, R1, the ground, R3, R3, and RS.

Usage The diffn constraint is not enough if one wants to produce a placement where no orthotope
floats in the air. This constraint is usually handled with a heuristic during the enumeration
phase.

See also orth_on_top_of_orth, orth_on_the_ground.

Key words geometry: geometrical constraint, non-overlapping, orthotope.



20000128

)

cA

£

6 R6 |......

5 |

4 R2 Ra 5

3 m ||

2 R1 R3

1| -
1 2 3 4 5 6 7 8 9 10 dim=1

Figure 4.438: Solution corresponding to the example

1049



1050 NARC, CLIQUE

Arc input(s)
Arc generator

Arec arity

Arc constraint(s)

Graph property(ies)

ORTHOTOPES

CLIQUE—collection(orthotopesl, orthotopes2)

2
A orthotopesl.key = orthotopes2.key,
V orth_on the_ground(orthotopesi.orth, VERTICAL_DIM) /'’
A orthotopesl.key # orthotopes2.key,
orth_on top_of_orth(orthotopesl.orth, orthotopes2.orth, VERTICAL_DIM)

NARC= |0RTHOTOPES|

Graph model

The arc constraint of the graph constraint enforces one of the following conditions:

e [f the arc connects the same orthotope O then the ground directly supports O,

e Otherwise, if we have an arc from an orthotope O; to a distinct orthotope Oa,
the condition is: O; is on top of O2 (i.e., in all dimensions, except dimension
VERTICAL_DIM, the projection of O; is included in the projection of Oz, while in
dimension VERTICAL_DIM the projection of O is located after the projection of O2).

Parts (A) and (B) of Figure 4.439 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

ORTHOTOPES

NARC=6
(A) (B)

Figure 4.439: Initial and final graph of the place_in_pyramid constraint



1298 PREDEFINED

4.306 visible

DESCRIPTION LINKS
Origin Extension of accessibility parameter of diffn.
Constraint visible(K,DIMS, FROM, O0BJECTS, SBOXES)
Type(s) VARIABLES : collection(v—dvar)
INTEGERS : collection(v—int)
NATURALS : collection(v—int)
DIMDIR : collection(dim—int,dir—int)
Argument(s) K : int
DIMS : sint
FROM : DIMDIR
oid—int,
sid—dvar,

x — VARIABLES,

start—dvar,

duration—dvar,

end—dvar

SBOXES : collection(sid—int,t — INTEGERS, 1 — NATURALS, f — DIMDIR)

OBJECTS : collection

Restriction(s) required(VARIABLES, v)
|VARIABLES| =K
required(INTEGERS, v)

|INTEGERS| = K
required(NATURALS, v)
INATURALS| = K

NATURALS.v > 0
required(DIMDIR, [dim,dir])
IDIMDIR| > 0

IDIMDIR| < K + K
distinct(DIMDIR, [])
DIMDIR.dim > 0

DIMDIR.dim < K

DIMDIR.dir > 0

DIMDIR.dir <1

K>0

DIMS > 0

DIMS <K
required(OBJECTS, [0id, sid, x])
require_at_least(2, 0BJECTS, [start,duration, end])
OBJECTS.oid > 1
OBJECTS.oid < |OBJECTS|
OBJECTS.sid > 1
OBJECTS.sid < |SBOXES)|
OBJECTS.duration > 0
required(SBOXES, [sid, t, 1])
SBOXES.sid > 1

SBOXES.sid < |SBOXES]|



Purpose

Example

20071013 1299

Holds if and only if:
1. The difference between the end in time and the start in time of each object is
equal to its duration in time.

2. Given a collection of potential observations places FROM, where each observation
place is specified by a dimension (i.e., an integer between 0 and k£ — 1) and by
a direction (i.e., an integer between O and 1), and given for each shifted box
of SBOXES a set of visible faces, enforce that ar least one visible face of each
shifted box associated with an object o € OBJECTS should be entirely visible
from at least one observation place of FROM at time o.start as well as at time
o.end — 1 are transparent. This notion is defined in a more formal way in the
Remark slot.

2,{0,1},

(dim — 0 dir — 1),
oid—1 sid—1 x—(1,2) start—8 duration—8 end— 16,

<oid72 sid—2 x—(4,2) start —1 duration—15 end—16 >’
sid—1 t—(0,0) 1—(1,2) f— (dim—0dir—1),

<sid—2 t—(0,0) 1—(2,3) f— (dim—0dir —1) >

27

(d

im—0dir — 1),
oid—1 sid—1 x—(1,2) start—1 duration—8 end—9,
< oid—2 sid—2 x—(4,2) start—1 duration—15 end— 16 > ’
sid—1 t—(0,0) 1—(
< -
27
(d

,2) f—(dim—0dir — 1),
sid—2 t— (0,0)

1,2
2,3) f—(dim—0dir —1)

im — 0 dir — 1),
oid—1 sid—1 x-—(1,1) start—1 duration—15 end— 16,

< oid—2 sid—2 x—(2,2) start—6 duration—6 end—12 > ’
sid—1 t—(0,0) 1—(1,2) f— (dim—0dir—1),

<sid72 t—(0,0) 1—(2,3) f— (dim— 0dir—1) >

(dim — 0 dir — 1),
oid—1 sid—1 x—(4,1) start—1 duration—8 end—9,

< oid—2 sid—2 x—(1,2) start—1 duration—15 end— 16 > ’
sid—1 t—(0,0) 1-(1,2) f—(dim—0dir—1),

<sid—2 t—(0,0) 1—(2,3) f— (dim—0dir— 1) >

(dim — 0 dir — 1),
oid—1 sid—1 x—(2,1) start—1 duration—8 end—09,

< oid—2 sid—2 x—(4,3) start—1 duration—15 end— 16 > ’
sid—1 t—(0,0) 1—(1,2) f— (dim—0dir—1),

<sid72 t—(0,0) 1—(2,2) f— (dim—0dir— 1) >

The five previous examples correspond respectively to parts (I), (II), (III) and (IV)
of Figure 4.564 and to Figure 4.565. Before explaining these five examples Figure 4.563
first illustrates the notion of observations places and of visible faces.



1300 PREDEFINED

d=1 dim=1.dir=1

A Y

2
I 1
i 1 ‘3 5
L L

5

4

dim=1,dir=0
—
d=0

Figure 4.563: Entirely visible faces (depicted by a thick line) of rectangles 1, 2, 3, 4,
5, 6 and 7 from the four observation places (dim = 0, dir = 1), (dim = 0, dir = 0),
(dim = 1, dir = 1) and (dim = 1, dir = 0) (depicted by an arrow)



20071013 1301

We first need to introduce a number of definitions in order to illustrate the notion of visibil-
ity.

Definition 1. Consider two distinct objects o and o' of the visible constraint (i.e., 0,0 €
iobjects) as well as an observation place defined by the pair (dim,dir) € FROM. The
object o is masked by the object o' according to the observation place (dim,dir) if there

exist two shifted boxes s and s' respectively associated with o and o' such that conditions A,
B, C, D and E all hold:

e (A)o.duration > 0 Ao .duration > 0 Ao.end > o .start Ao’ .end > o.start
(i.e., the time intervals associated with o and o’ intersect).

e (B) Discarding dimension dim, s and s’ intersect in all dimensions specified by DIMS
(i.e., objects o and o' are in vis-a-vis).

e (C)Ifdir =0
then o.z[dim] + s.t[dim] > o'.z[dim] + s".t[dim] + s’.l[dim]
else o' .x[dim] + s'.t[dim] > o.x[dim] + s.t[dim] + s.l[dim] (i.e., in dimension dim,
o and o' are ordered in the wrong way according to direction dir).

e (D) o.start > o .start V o.end < o'.end (i.e., instants o.start or o.end are
located within interval [0’ .start, o'.end]; we consider also condition A.).

e (E) The observation place (dim,dir) occurs within the list of visible faces asso-
ciated with the face attribute £ of the shifted box s (i.e., the pair (dim,dir) is a
potentially visible face of o).

Definition 2. Consider an object o of the collection OBJECTS as well as a possible ob-
servation place defined by the pair (dim, dir). The object o is masked according to the
observation place (dim, dir) if and only if at least one of the following conditions holds:

e No shifted box associated with o has the pair (dim,dir) as one of its potentially
visible face.

e The object o is masked according to the possible observation place (dim,dir) by
another object o'

Figures 4.564 and 4.565 respectively illustrate Definition 1 in the context of an observation
place (depicted by a triangle) equal to the pair (dim = 0,dir = 1). Observe that, in the
context of Figure 4.565, as the DIMS parameter of the visible constraint only mentions
dimension 0 (and not dimension 1), one object may be masked by another object even if
the two objects do not intersect in any dimension: i.e., only their respective ordering in the
dimension dim = 0 as well as their positions in time matter.

Definition 3. Consider an object o of the collection 0BJECTS as well as a possible ob-
servation place defined by the pair (dim, dir). The object o is masked according to the
observation place (dim, dir) if and only if at least one of the following conditions holds:

e No shifted box associated with o has the pair (dim,dir) as one of its potentially
visible face.

e The object o is masked according to the possible observation place (dim,dir) by
another object o' .

Definition 4. An object of the collection 0BJECTS constraint is masked according to a set
of possible observation places FROM if it is masked according to each observation place of
FROM.



1302

PREDEFINED

visible( 2, {0,1}, <dim-0 dir-1>,
<oid-o0 sid-1 x—<1,2> start-8 duration-8 end-16,

<sid-1 t-<0,0> |-<1,2> f-<dim-0 dir-1>,
sid-2 t-<0,0> I-<2,3> f-<dim-0 dir-1>>)

objects

0id-0’ sid-2 x-<4,2> start-1 duration-15 end-16>,

L I e —— i

°

—

visible( 2, {0,1}, <dim-0 dir-1>,

<oid-0 sid-1 x—<1,2> start-1 duration-8 end-9,
0id-0’ sid-2 x-<4,2> start-1 duration-15 end-16>,
<sid-1 t-<0,0> |-<1,2> f-<dim-0 dir-1>,
sid-2 t-<0,0> I-<2,3> f-<dim-0 dir-1>>)

objects

o,

o

time interval [1,8] time interval [8,16[

>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 time

>
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 time

time interval [1,9]

time interval [9,16]

o o o o
7) I\ I) I\
4 4 4 4
3 B dim=0,dir=1 3 B dim=0.dir=1 3 B dim=0,dir=1 3 B dim=0,dir=1
i - i - i - -
2| 2| 2| 2]
1 1 1 1
S ———————
123456 4 123456 123456 123456
o is masked by o’ according to <dim=0,dir=1> since: o is masked by o' according to <dim=0,dir=1> since:
(A) oand o’ intersect in time, (A) oand o’ intersect in time,
(B) oand o’ intersect in dimension 1, (B) oand o’ intersect in dimension 1,
(C) indimension 0, o' starts after the end of o, (C) indimension 0, o’ starts after the end of o,
(D) the start in time of o is located after the start in time of o’, (D) the end in time of o is located before the end in time of o',
(E) <dim=0,dir=1> is a potentially visible face of o. (E) <dim=0,dir=1> is a potentially visible face of o.
()] an
visible( 2, {0,1}, <dim-0 dir-1>, visible( 2, {0,1}, <dim-0 dir-1>,
<oid-o sid-1 x—<1,1> start-1 duration-15 end-16, <oid-0 sid-1 x—<4,1> start-1 duration-8 end-9,
oid-0’ sid—-2 x—<2,2> start—6 duration-6 end-12>, 0id-0’ sid-2 x—<1,2> start-1 duration-15 end-16>,
<sid-1 t-<0,0> I-<1,2> f-<dim-0 dir-1>, <sid-1 t-<0,0> I-<1,2> f-<dim-0 dir-1>,
sid-2 t-<0,0> I-<2,3> f-<dim-0 dir-1>>) sid-2 t-<0,0> I-<2,3> f-<dim-0 dir-1>>)
2 2
o 5]
£, £,
A A
o' ’—‘ g g g g o' [
® [ 1 — @ —

01 2 3 4 5

time interval [1,6{ time interval [6,12]

>
6 7 8 9 10 11 12 13 14 15 16 17 time

time interval [12,16[

o
@

is not masked by o’ according to <dim=0,dir=1> since:
(A
(B,
(c
(E

Even though o and o' intersect in time,
and even though o and o’ intersect in dimension 1,

condition (D) does not hold.

o o o

1 1 I

s 5 L]

& | dim=0, 4 | dim=0, 4 | dim=0,

3 dir=1 3 o dir=1 3 dir=1

2 < 2| ] < 2 <
o o o

1 — 1 — 1 —
123 4 4q 128 4 4q 123 4 4

and even though, in dimension 0, o’ starts after the end of o,
and even though <dim=0,dir=1> is a potentially visible face of o,

01 2 3 45 6 7 8

time interval [1,9]

dim=0,
dir=1

-

123456 4

condition (C) does not hold.

9 10 11

>
12 13 14 15 16 17 time

time interval [9,16[

Ly

B VN

Even though o and o' intersect in time,
and even though o and o' intersect in dimension 1, and even
though the end in time of o is located before the end in time of o',
and even though <dim=0,dir=1> is a potentially visible face of o,

dim=0,
dir=1

-

123456 4o

o is not masked by o’ according to <dim=0,dir=1> since:
(A
(B,
D)
(E

(1)

av)

Figure 4.564: Illustration of Definition 1: (IIT) the case where an object o is masked
by an object o’ according to dimensions {0, 1} and to the observation place (dim =
0,dir = 1) because (A) o and o’ intersect in time, (B) 0 and o’ intersect in dimension
1, (C) 0 and o’ are not well ordered according to the observation place, (D) there exists
an instant where o’ if present (but not 0) and (E) (dim = 0,dir = 1) is a potentially
visible face of o; (IIL,IV) the case where an object o is not masked by an object o’
according to the observation place (dim = 0,dir = 1).




20071013

objects

visible(2, {0}, <dim-0 dir-1>,
<oid-0 sid-1 x-<2,1> start-1 duration-8 end-9,
oid-0’ sid-2 x-<4,3> start—1 duration—-15 end-16>,
<sid-1 t-<0,0> |-<1,2> f-<dim-0 dir-1>,
sid-2 t-<0,0> |-<2,2> f-<dim-0 dir-1>>)

o

o

—

time interval [1,9[

LA

01 2 3 4 5 6 7 8 9

- N W s
y

12 3 4 5 6

interval [9,16[

time
Al
<A
dim=0, 41
dir=1 3
- -
2 =
9
d=0

1 2 3 4 5 6

o is masked by o’ according to <dim=0,dir=1> since:
(A) o and o’ intersect in time,
(C) indimension 0, 0’ starts after the end of o,

(D) the end in time of o is located before the end in time of 0’,
(E) <dim=0,dir=1> is a potentially visible face of o.

10 11 12 13 14 15 16 17 time

dim=0,
dir=1

-

d=0

1303

Figure 4.565: Illustration of Definition 1: the case where an object o is masked by an
object o’ according to dimension 0 and to the observation place (dim = 0,dir = 1)
because: (A) o and o' intersect in time, (C) o and o’ are not well ordered according to
the observation place and (D) there exists an instant where o’ if present (but not o) and
(E) (dim = 0,dir = 1) is a potentially visible face of o.



1304 PREDEFINED

We are now in position to define the visible constraint.

Definition 5. Given a visible(K,DIMS,FROM, OBJECTS, SBOXES) constraint, the
visible constraint holds if none of the objects of O0BJECTS is masked according to the
dimensions of DIMS and to the set of possible observation places defined by FROM.



20071013

1305

Usage We now give several typical concrete uses of the visible constraint, which all mention
the diffst as well as the visible constraints:

e Figure 4.566 corresponds to a ship loading problem where containers are piled within
a ship by a crane each time the ship visits a given harbour. In this context we have first
to express the fact that a container can only be placed on top of an already placed
container and second, that a container can only be taken away if no container is
placed on top of it. These two conditions are expressed by one single visible
constraint for which the DIMS parameter mentions all three dimensions of the place-
ment space and the FROM parameter mentions the pair (dim = 2,dir = 1) as its
unique observation place. In addition we also use a diffst constraint for expressing

non-overlapping.

visible(3, {0,1,2}, <dim-2 dir-1>,

<oid-1 sid-1 x—<1,1,1> start—0
oid-2 sid—1 x—<1,1,3> start—0
0id-3 sid—1 x—<4,1,1> start—0
oid—4 sid-1 x—<1,1,3> start—8
oid-5 sid—1 x—<4,1,1> start—8

duration—17 end-17,
duration—8 end-8 ,
duration—-8 end-8 ,
duration-9 end-17,
duration—16 end—24,

0id—6 sid-1 x—<1,1,1> start—17 duration—7 end-24>
<sid-1 t—<0,0,0> 1-<2,4,2> f—<dim-2 dir-1>>)

objects

- N w s 0o

- N WA O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

time interval [0,8[

time interval [8,17]

dim=2,dir=1 ' dim=2,dir=1 '

- N W h O

4

| — 5

1 3
2

12345 1

l
23 45!

17

18

- N W hH O

19 20 21 22 23 24

time interval [17,24]

dim=2,dir=1 '

23 45 |

Figure 4.566: Illustration of the ship loading problem

time

e Figure 4.567 corresponds to a container loading/unloading problem in the context
of a pick-up delivery problem where the loading/unloading takes place with respect
to the front door of the container. Beside the diffst constraint used for expressing

non-overlapping, we use two distinct visible constraints:




Remark

See also

Key words

1306

PREDEFINED

— The first visible constraint takes care of the location of the front door of the

container (each object o has to be loaded/unloaded without moving around any
other object, i.e., objects that are in the vis-a-vis of o according to the front
door of the container). This is expressed by one single visible constraint for
which the DIMS parameter mentions all three dimensions of the placement space
and the FROM parameter mentions the pair (dim = 1,dir = 0) as its unique
observation place.

The second visible constraint takes care of the gravity dimension (i.e., each
object that has to be loaded should not be put under another object, and recip-
rocally each object that has to be unloaded should not be located under another
object). This is expressed by the same visible constraint that was used for the
ship loading problem, i.e., a visible constraint for which the DIMS parameter
mentions all three dimensions of the placement space and the FROM parameter
mentions the pair (dim = 2,dir = 1) as its unique observation place.

e Figure 4.568 corresponds to a pallet loading problem where one has to place six
objects on a pallet. Each object corresponds to a parallelepiped that has a bar code
on one of its four sides (i.e., the sides that are different from the top and the bottom
of the parallelepiped). If, for some reason, an object has no bar code then we simply
remove it from the objects that will be passed to the visible constraint: this is for
instance the case of the sixth object. In this context the constraint to enforce (beside
the non-overlapping constraint between the parallelepipeds that are assigned to a
same pallet) is the fact that the bar code of each object should be visible (i.e., visible
from one of the four sides of the pallet). This is expressed by the visible constraint
given in Part (F) of Figure 4.568.

The visible constraint is a generalisation of the accessibility constraint initially in-
troduced in the context of the diffn constraint.

diffst,diffn, non_overlap_sboxes.

constraint type: decomposition.

filtering: sweep.

geometry: geometrical constraint.



20071013

1307

visible(3, {0,1,2}, <dim—1 dir-0>,
<oid-1 sid—1 x—<1,2,3> start—0
oid-2 sid-2 x—<1,3,3> start—0
oid-3 sid-3 x—<1,1,1> start—-0
o0id—4 sid—4 x—<4,1,1> start—0
0id-5 sid-5 x—<1,2,3> start—8
0id—6 sid—6 x—<3,1,1> start—8

duration—8 end-8,
duration—8 end-8,
duration—17 end-17,
duration—17 end-17,
duration-9 end-17,
duration—12 end-24,

oid-7 sid-3 x—<1,1,1> start—17 duration—7 end—24>,

<sid-1 t—<0,0,0> 1-<2,1,1> f-<dim-1 dir-0, dim-2 dir—1>,
sid-2 t—<0,0,0> 1-<2,2,2> f—<dim~-1 dir-0, dim-2 dir-1>,
sid-3 t—<0,0,0> 1-<2,4,2> f—<dim-1 dir-0, dim-2 dir-1>,
sid—4 t—<0,0,0> 1-<2,4,1> f—<dim-1 dir-0, dim-2 dir—1>,
sid-5 t—-<0,0,0> 1-<2,3,1> f-<dim-1 dir-0, dim-2 dir-1>,
sid—6 t—<0,0,0> 1-<1,2,2> f—<dim—-1 dir-0, dim-2 dir-1>>)

visible(3, {0,1,2}, <dim-2 dir—1>,

<oid-1 sid—1 x—<1,2,3> start—0
oid-2 sid-2 x—<1,3,3> start—0
oid-3 sid-3 x—<1,1,1> start—-0
oid—4 sid—4 x—<4,1,1> start—0
oid-5 sid-5 x—<1,2,3> start—8
0id—6 sid—6 x—<3,1,1> start—8

duration—8 end-8,
duration—8 end-8,
duration—17 end-17,
duration—17 end-17,
duration—9 end-17,
duration—12 end-24,

oid-7 sid-3 x—<1,1,1> start—17 duration—7 end—24>,

<sid-1 t-<0,0,0> 1-<2,1,1> f-<dim-1 dir-0, dim-2 dir-1>,
sid-2 t—<0,0,0> 1-<2,2,2> f—<dim—1 dir-0, dim-2 dir-1>,
sid-3 t—-<0,0,0> 1-<2,4,2> f—<dim-1 dir-0, dim-2 dir-1>,
sid—4 t—<0,0,0> 1-<2,4,1> f—<dim-1 dir-0, dim-2 dir—1>,
sid-5 t—-<0,0,0> 1-<2,3,1> f-<dim-1 dir-0, dim-2 dir-1>,
sid—6 t—<0,0,0> 1-<1,2,2> f—<dim~-1 dir-0, dim-2 dir—1>>)

objects

- N W A O oo N

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

time interval [0,8[

dim=2,dir=1 '

time interval [8,17[

dim=2,dir=1 '

time interval [17,24]

dim=2,dir=1 '

- N W b~ O
-

- N W Hr O

- N W Hr O

23 4 5 |

dim=1,dir=0 ‘

12345

dim=1,dir=0 ‘ dim=1,dir=0 ‘

Figure 4.567: Illustration of the pick-up delivery problem

time




1308 PREDEFINED

Shape of the fourth object

Potential shapes for the first object
@
T
o
n
Potential shapes for the second object
L& |
Potential shape for the third object

visible(3, {0,1,2}, <dim-0 dir-0, dim-0 dir-1, dim-1 dir-0, dim-1 dir-1>,
<oid-o1 sid-s1 x—<1,4,1> start-0 duration-1 end-1,
0id-02 sid-s1 x-<3,4,1> start-0 duration-1 end-1,
0id-03 sid-s2 x-<1,2,1> start-0 duration-1 end-1,
0id-04 sid-s2 x-<4,1,1> start-0 duration-1 end-1,
0id—-05 sid-s3 x-<1,1,1> start-0 duration-1 end-1,
03] 06 o4 0id—06 sid—-s4 x-<2,2,1> start-0 duration-1 end—1>,
<sid-s1 t-<0,0,0> |-<2,3,1> f-<dim-0 dir-0, dim-0 dir-1>,
sid-s2 t-<0,0,0> 1-<3,2,1> f-<dim-1 dir-0, dim-1 dir-1>,
sid-s3 t-<0,0,0> 1-<1,2,1> f-<dim-0 dir-0, dim-0 dir-1>,
sid-s4 t-<0,0,0> |-<2,1,1> f-<dim-1 dir-0, dim-1 dir-1>,
® sid-85 t-<0,0,0> I-<3,1,1> f-<dim—0 dir-0, dim~0 dir—1, dim-1 dir-0, dim—1 dir—1>,
sid-s6 t-<0,0,0> [-<2,2,1> f-<>)

(F)

Figure 4.568: Illustration of the pallet loading problem



A Generic Geometrical Constraint Kernel in Space and
Time for Handling Polymorphic k-Dimensional Objects

N. Beldiceant, M. Carlsson, E. Podel, R. Sadek, and C. Truchét

1 Ecole des Mines de Nantes, LINA FRE CNRS 2729, FR-44307 daRtance
{Ni col as. Bel di ceanu, Emmanuel . Poder, Ri da. Sadek}@m. fr
2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mat s. Car|l sson@i cs. se
3 Université de Nantes, LINA FRE CNRS 2729, FR-44322 Narfesnce
Charl otte. Truchet @ni v-nantes. fr

Abstract. This paper introduces a geometrical constraint kerneldéodting the
location in space and time of polymorptkedimensional objects subject to vari-
ous geometrical and time constraints. The constraint kesigeneric in the sense
that one of its parameters is a set of constraints on subk#ie objects. These
constraints are handled globally by the kernel.

We first illustrate how to model several placement problerith the constraint
kernel. We then explain how new constraints can be intradiacel plugged into
the kernel. Based on these interfaces, we develop a genelimensional lexi-
cographic sweep algorithm for filtering the attributes ofcdnject (i.e., its shape
and the coordinates of its origin as well as its start, daraéind end in time)
according to all constraints where the object occurs. BErpaats involving up to
hundreds of thousands of objects annhillion integer variables are provided in
2, 3 and4 dimensions, both for simple shapes (i.e., rectangles)lpkagipeds)
and for more complex shapes.

1 Introduction and Presentation of the Kernel

This paper introduces a constraint kergebst(k, O, S, C) for handling in a generic
way a variety of geometrical constrainfsin space and time between polymorphic
k-dimensional object® (k € NT), where each object takes a shape among a set of
shapes described hy during a given time interval and at a given position in space.
This line of research can be seen as a continuation and disagoa of previous work

on non-overlapping parallelepipeds [1-4].

Each shape is defined as a finite set of shifted boxes, wheheshdfted box is
described by a box in &-dimensional space at a given offset (from the origin of the
shape) with given sizes. More preciselyshifted boxs = sbox(sid, t[],1[]) € S is
an entity defined by its shape idsid, shift offsets.t[d], 0 < d < k, and sizes.l[d]
(s.l[d] > 0,0 < d < k). All attributes of a shifted box are integer values. Theshape
is defined as the union of shifted boxes sharing the same stiapachobjecto =
object(id, sid, x[], start, duration, end) € O is an entity defined by its unique object
id o.id, shape itb.sid, origino.z[d], 0 < d < k, startin timeo.start, duration in time



o.duration (o.duration > 0) and end in timev.end.! All these attributes correspond
to domain variable$ Typical constraints from the list of constrairitsan express, for
instance, the fact that a given subset of objects ftdmo not pairwise overlap or that
they are all included within a given bounding box. Constim@ways have two first
arguments4; and O; (followed by possibly some additional arguments) whictpres
specify:

— Alist of distinct dimensions (integers [, k — 1]) that the constraint considers.
— Alist of identifiers of the objects to which the constrainpées.

Example 1.Assume we have a 3D placement problem (ike5 3) involving a set of paral-
lelepipedsP and one subsé®’ of P, where we want to express the fact that (1) no parallelegiped
of P should overlap, and (2) no parallelepipedsRSfshould be piled. Constraints (1) and (2)
resp. correspond teon-overlapping[0, 1, 2], ) and tonon-overlapping[0, 1], P’). Within the
first non-overlappingconstraint, the argumeno, 1, 2] expresses the fact that we consider a
non-overlapping constraint according to dimensiond and2 (i.e., given any pair of paral-
lelepipedsp” andp” of P there should exist at least one dimensibiid € {0, 1,2}) where
the projections op’ andp” on d do not overlap). Similarly, the argumejtt, 1] of the second
non-overlapping constraint expresses the fact that, givgrpair of parallelepipeds andp” of

P’, there should exist at least one dimensibfl € {0, 1}) wherep’ andp” do not overlap).

geost(k, 0, S,C) is defined in the following way: given a constraifit; (A;, O;)
from the list of constraint€ between a subset of objeaty C O according to the
attributesA;, let MC; denote the sets of cliques stemming from the object§,ahat
all overlap in time? The constraints ofeost (k, O, S, C) hold if and only ifVctr; € C,
VO e, € MC; : ctri(A;, OMCi) holds.

Example 2.Fig. 1 presents a typical example of a dynamic 2D placemestilpm where one
has to place four objects, in time and within a given box, st thjects that overlap in time do
not overlap. Parts (A), (B), (C) and (D) resp. represent thtemtial shapes associated with the
four objects to place, where the origin of each object isaspnted by a black squasePart (E)
shows the position of the four objects of the example as the tiaries, where the first, second,
third and fourth objects were resp. assigned shapes’s, Ss and.So:

— During the first time interval2, 9] we have only objec; at position(1, 2).

— Then, atinstant0 objectsO2 andOs both appear. Their origins are resp. placed at positions
(2,1)and(4,1).

— Atinstant14 objectO; disappears and is replaced by objégt The origin ofO, is fixed at
position(1, 1). Finally, at instan22 all three object€),, O3 andO, disappear.

The corresponding arguments are:

! The time dimension is treated specially since theation attribute may not be fixed, which
is not the case for the sizes of a shifted box. Also, the gegcaétonstraints only apply on
objects that intersect in time.

2 A domain variablev is a variable ranging over a finite set of integers denoteddwy(v); let
v andw resp. denote the minimum and maximum possible values.for

% In fact, these cliques (of an interval graph) are only usedédining the declarative semantics
of geost’s constraints.



— s2 sa [ L : ;
8 | — 8. L8 :
2 m L 98 S L :
S5 I b -y 188 sg S9
.2 L c S5 = Loy
zn_g : w'g D 7 Ec! £ 8
s2 T 11 [ ] 85 [ A SR -)
=7 = — . . 9%
c = CEa LB P2
% ; > > : % g N % ; - : %t
=g i | B 22 L1 £ &3
R (A) objectO1 . (B)object 02 (C) object O3 (D) object O4
objects A | first chque—{Ol}l | second clique={01,02,03} | | third clique={02,03,04} |
1 1
04 SR - ’ 04 !
B : : : : : .
LI : : ¥ - - - - ¥
02 [ T S R ’ 1 object 02 is assigned shape S5 1
: ] ] ; : : : : : n
o1 : ’ 1 object O1 is assigned shape S1 1 ‘ I R R |
1 2 3 4 5 6 7 8 © 10 11 12 13 14 15 16 17 18 10 20 21 22 t|me
interval [2,9] interval [10,13] interval [14,21]
4 [ 1] 4 a
3101 o 3|01 3
2 2 02 2 |04
(E) 1 1 g
12 3 45 12 3 4 5 1 2 3 4 5

Fig. 1. Example with4 objects9 shapes, onaon-overlappingand oneincluded constraints

01 geost (2,

02 [object(1,1,[1,2], 2 12,14), object(2, 5, [2 1], 10, 12, 22),

03 object(3,8,[4,1],10,12,22), object(4,9,[1,1],14, 8 22)],

04 [sbox(1,[0,0],[2,1]), sbox(1,[0,1],[1,2]), sbox(1,[1,2],[3,1]),
05 sbox(2,[0,0],[3,1]), shox(2,[0,1],[1,3]), sbox(2,[2 1],[1,1]),
06 sbox(3,[0,0],[2,1]), sbox(3,[1,1],[1,2]), sbox(3,[2,2],[3,1]),
07 sbox(4,[0,0],[3,1]), sbox(4,[0,1],[1,1]), sbox(4,[2,1],[1,3]),
08 sbox(5,[0,0],[2,1]), sbox(5,[1,1],[1,1]), sbox(5,[0,2],[2,1]),
09 sbox(6,[0,0],[3,1]), shox(6,[0,1],[1,1]), sbox(6,[2,1],[1,1]),
10 sbox(7,[0,0],[3,2]), shox(8,[0,0],[2, 3]), sbox(9,[0,0],[1, 4])],
11 [ non-overl apping([0,1],[1,2,3, 4]) included([0,1],[1,2,3,4],[1,1],[5,4])])

Its first argument is the number of dimensions of the placement space we caon#iisleecond
and third arguments resp. describe the four objects andhifted boxes of the nine shapes
we have. For instance, tieboxes of shape, (depicted by3 thick rectangles in Part (A) of
Fig. 1) respectively correspond to tRdoxes declared at line 04 of the example. Finally, its last
argument gives the list of geometrical constraints impdsegkost: the first constraint expresses
a non-overlapping constraint between the four objectslenthe second constraint imposes the
four objects to be located within the box containing all peifx, y) suchthall <z <1+5-1
andl <y < 1+4—1. The constraints afeost hold since the four objects do not simultaneously
overlap in time and in space and since they are completelydad within the previous box (i.e.,
see Part (E) of Fig. 1).

Within the scope ofjeost(k, O, S, C), this paper presents a filtering algorithm that
prunes the domain of each attribute of every object object(id, sid, x[], start,
duration, end) € O. All values found infeasible are deleted from the shapébaitk
sid; for the other attributes (i.e., the origir], the start, the duration and the end), the
minimum and maximum are adjusted.



The paper is organised as follows. Section 2 provides anviewerof placement
problems that can be modelled with the constraints cugrevilable ingeost. Sec-
tion 3 presents the overall architecture of the geometkeahel. It explains how to
define geometrical constraints in terms of a programmirgyfate by the geometrical
kernel. Section 4 focusses on the main contribution of thiep: a multi-dimensional
lexicographic sweep algorithm used for filtering the atitéds of an object ofjeost.
Section 5 evaluates the scalability of thest kernel as well as its ability to deal with a
variety of specific placement problems. Before we concl&aetion 6 comparegeost
with related work and suggests future directions.

2 Modelling Problems with geost

Asillustrated by Fig. 2 in the context abn-overlappinggeost allows to model directly
a large number of placement problems:

— Case (A) corresponds to a non-overlapping constraint arttoeg segments.

— The second and third cases (B,C) correspond to a hon-opémaponstraint be-
tween rectangles where (B) is a special case where the dialigsectangles in the
second dimension are equaltpthis can be interpreted asnaachine assignment
problem

— Case (D) corresponds to a non-overlapping constraint egtwectangles where
each rectangle can have two orientations. This is achieyed$ociating with each
rectangle two shapes of respective sizeé andh x [. Since their orientation is not
initially fixed, the included constraint enforces the three rectangles to be included
within the bounding box defined by the origin’s coordinates and sizess, 3.

— Case (E) corresponds to a non-overlapping constraint leetweore complex ob-
jects where each object is described by a given set of reletang

— Case (F) describes a placement problem where one has tsfiigha&ach rectangle
to a strip so that all rectangles that are assigned to the saipelo not overlap.

— Case (G) corresponds to a non-overlapping constraint leetwarallelepipeds.

— Case (H) can be interpreted as a non-overlapping consbretiveen parallelepipeds
that are assigned to the same container. The first dimensigesponds to the
identifier of the container, while the next three dimensiaresassociated with the
position of a parallelepiped inside a container.

— Case (l) describes a rectangle placement problem overdbresecutive time-slots:
rectangles assigned to the same time-slot should not gvierlame. We initially
start with the three rectanglés2 and3. Rectanglg is no longer present at instaht
(the trianglev within rectangle3 at timel indicates that rectangliewill disappear
at the next time-point), while rectangleappears at instait(the trianglea within
rectangle4 at time 2 denotes the fact that the rectandl@ppears at instarg).
Finally, rectangle disappears at instafitand is replaced by rectangie

3 Standard Representation of Geometrical Constraints

The key idea for handling multiple geometrical constraiimtsa common kernel is
the following. For each type of geometrical constraint fdun C (also calledexter-



or
1 ] B 27y
@) @ 2h 2| % ©) s[ [/ s
123456 78 1L 3, o 2 34
12345678 1L ‘ ‘ 2
123451t
. 1 2
3\\L\2\‘\ 3|1 3
(B)Z\\\\\\\ (E)Z{J} ,,,,,
1 Llw ‘ [ LS‘ \2\ (H)3
1234567 8 12346567 8 202 3 /] A
11‘ 0 2
sl | 1 1231231
3 2 . ) .
2L time=1 time=2 time=3
3L 2 ) ! 1 1 1
(C) 2L | 1 3 (F)a, . ‘ ‘2
1 I L1 20 2 1 (I)E’Lf‘v
12346567 8 2 am {4
111 [ [ V3‘
12345678 lml

I I
123123123

Fig. 2. Nine typical examples of use gtost

nal constraints), one has to provide a service that computesssary conditions (also
calledinternal constraints) for a given object and shape. Given an extgewhetrical
constraintectr; (A;, O;) (A; € {0,1,...,k —1},0; C O), one of its objecb € O;
and one potential shapef o, such a necessary condition generateddsy;, o ands is

a unary constraintictr(o.x) such thato.sid = s A ectr;(A;, O;) = ictr(o.x). Now,
the key to being able to globally treat such necessary conditn the kernel is to give
them a uniform representation. We have chosen the followireg

— A constraintoutbox(t, ) on o.x holds iff o.x is located outside the shifted box
defined by its origins point[d], 0 < d < k, and sized[d], 0 < d < k (i.e.,
Id € [0,k — 1] | o.x[d] < t[d] V o.x[d] > t[d] + I[d] — 1).

Thus, an outbox corresponds to a box-shaped set of poirttsutbanfeasible for
o.x. The purpose of the introduction of outboxes is to have a comrapresentation
for the kernel, suitable for the-dimensional lexicographic sweep algorithm presented
in the next section, which considers all the outboxes, falacsed object and shape, in
onerun.

Consequently, for each type of external geometrical caimgtrfound inC a service
GenOutboxes(ectr;, o, s) : (ictrs), responsible for generating outboxes, must be pro-
vided. This service is assumed to generate outboxes tlasatt the domains of the
origin coordinates 0b. Also, if all attributes mentioned byctr; belonging to objects
other tharv are fixed, those outboxes are assumed to be necessary anigstiéondi-
tions, lest the kernel accept false solutions.

Example of External Geometrical Constraints.We now illustrate some external geo-
metrical constraints that are currently available witiia tonstraint kernel. As we saw
in the introduction, an external constraint always hasadtlévo arguments that resp.

4 Unary, since it involves thé coordinates of aingleobject.



correspond to a list of distinct dimensions and to a list géobidentifiers to which the
constraint apply.

The included and non-overlappingexternal constraints. The included (A;, O;,t,1)
and thenon-overlappingA;, O;) external constraints take as input a list of distinct
dimensions4; in {0,1,...,k — 1} and a listO; of distinct object identifiers ofeost.

In addition, theincluded constraint considers a shifted box defined by its origin poin
t[d],0 < d < k,and sizd[d],0 < d < k.

The included constraint enforces for each objectwith o.id € O;) and for any
corresponding shifted box (with o.sid = s.sid) the conditionvd € A; | t[d] <
o.z|d] + s.t[d] A o.x[d] + s.t[d] + s.l[d] — 1 < t[d] +[d] — 1 (i.e.,s is included within
the shifted box attribute defined by the parameteand/ of the included constraint).
Depending on which shape of an object we actually consibleriricluded constraint
can be translated &% outbox constraints.

Thenon-overlappingonstraint enforces the following condition: given twotifist
objectso and o’ (with o.id, o’.id € ©;) that overlap in time, no shifted box (with
o.sid = s.sid) should overlap any shifted box (with o’.sid = s’.sid); i.e. it should
hold that3d € A; | o.x[d] + s.t[d] + s.l[d] < o' .x[d] + §'.t[d] V o' .x[d] + &' .t[d] +
§'l[d] < o.x[d] + s.t[d] (i.e., there exists a dimension where they do not intersect)
While focussing on an objeectwe can easily generate antbox constraint for each
objecto’ that should not overlap by reusing the results of [2].

4 The Geometrical Kernel: a Generick-dimensional
Lexicographic Sweep Algorithm

In this section, we first present the sweep algorithm usefilfering the coordinates of
the origin of an objecb of geost when each object has one single shape. We initially
assume that time is treated exactly like the space dimessi@n that they.x array is
extended by one element. Toward the end of this section, wkiexin detail how to
treat the time attributes of an object. We also assume forthatthe shape attribute is
fixed, and explain later how to handle multiple potentialm@sfor an object (i.e., poly-
morphism). We now introduce some notation used througlmisisection.

Notation. Assumewv andw are vectors of scalars df components. Then «— w
denotes the element-wise assignmentvdd v, w + d (resp.w — d) denotes the ele-
ment-wise addition off (resp.—d) to w. Given a scalat, 0 < d < k — 1, rot(v, d, k)
denotes the vectdo|d], v[(d+1) mod k],...,v[(d—1) mod k]). Thatis, in the ro-
tated vectory[d] is the most significant element, which is what we need wheningn
the sweep algorithm on dimensidn

The Sweep Algorithm. This algorithm first considers all outbox&€, derived from
C where objecb actually appears, and then performs a recursive traveiriad place-
ment space for each coordinate and direction (ivén, or max). Without loss of gen-
erality, assume we want to adjust the minimum value of dfe coordinateo.z[d],



0 < d < k, of the origin ofo. The algorithm starts its recursive traversal of the place-
ment space at point = rot(o.z, d, k) and could in principle explore all points of the
domains ofo.x, one by one, in increasing lexicographic order, until a p@&rfound
that is not inside any outbox, in which cagé] is the computed new minimum value.
To make the search efficient, instead of moving each timedastitcessor point, we
arrange the search so that it skips points that are known itusile some outboX.

Thus, we compute the lexicographically smallest peimstch that:

1. ¢ is lexicographically greater than or equakto
2. every element of is in the domain of the corresponding elemenbof,
3. ¢’ is not inside any outbox dfC,,.

If no suchc’ exists, the constraint fails. Otherwise, the minimum valtie.z[d] is
adjusted ta’[0]. As we saw, the sweep algorithm moves in increasing lexagigic or-
der a point: from its lexicographically smallest potential feasiblesjtion to its lexico-
graphically largest potential feasible position throutjpatential points. The algorithm
uses the following data structures:

— The current positiom of the sweep.

— A vectorn[0..k — 1] that records knowledge about already encountered sets of
infeasible points while movingfrom its first potential feasible position. The vector
n is always element-wise greater thamnd maintained as follows. Létf, sup
denote the vectoisif = rot(o.z, d, k) andsup = rot(o.z + 1, d, k):

e Initially, n = sup.

e Whenever an outbox containingc is found,n is updated by taking the ele-
ment-wise minimal value of and the upper boundary eft(f, d, k), indicat-
ing the fact that new candidate points can be found beyorid/éhae.

e Whenever we skip to the next candidate point, we reset thmeezlts ofn that
were used to the corresponding valuesgs.

The following invariant holds for the vectar, and is used when advancingp the
next candidate point. Létbe the smallest such thati[j + 1] = sup[j + 1] A+ -+ A
nlk — 1] = sup[k — 1] and suppose is known to be in some outbox. Then, the
next point, lexicographically greater thamnd not yet known to be in any outbox,
is (c[0],...,c[i — 1],n[d],inf[i + 1], ..., inf[k — 1]).

Algorithm 1 implement this idea. The algorithm prunes therds of each coordi-
nate of every object wrt. its relevant outboxes, iteratméx-point.

Efficiency. The main inefficiency in this sweep algorithm lies in seanghthe set
of outboxes (line 4 ofPruneMin). In order to make this search more efficient, we
can make the sweep algorithm more sophisticated by thewwlgp modifications to
PruneMin:

— We extend the state of the algorithm by awent point seriesordered in lexi-
cographically increasing order. These events corresportet lexicographically
smallest (insert events) and largest (delete events)aeiénfeasible point associ-
ated with each outboictr, € ZC,. They are sorted in lexicographically increasing
order, and we maintain a pointer into the series in sync woihtg:.

5 Potential holes in the domains are reflected in outboxes.



VARIABLES
x1inl.4,ylin2.4
x2in4.4,y2in6..6

x3in 2..4,y3in 8.9
x4in7.7,y4in 1.1

x5in 1..8,y51in 1..8, y5<>7

=
o

PN WD OO N ©©

=
o

=
o

PN WD OO N O ©

HNW#U"%\‘!@@

)

1‘2 3‘4 56 7 8
(D)

SWEEP POINT: ¢=(1,7)

ctrS

o

1

1
-

1

|

otrl - ema

12345‘6‘7
©)

SWEEP POINT: ¢=(3,4)

8

ctrt-

emd

453 4(J)5 6 78

EXTERNAL CONSTRAINT (non—overlapping)

geost( [object(1,1,[x1,y1],0,1,1),0bject(2,2,[x2,y2],0,1,1),
object(3,3,[x3,y3],0,1,1),0bject(4,4,[x4,y4]0,1,1),
object(5,5,[x5,y5],0,1,1)],
[shape(1,[0,2],[0,1]),shape(2,[0,3],[0,1]),shape(3,[0,1],[0,1]),
shape(4,[0,1],[0,3]),shape(5,[0,5],[0,4])],
[non-overlapping([0,1],[1,2,3,4,5])] )

INTERNAL CONSTRAINTS GENERATED

FOR FILTERING THE ORIGIN OF THE

FIFTH OBJECT, i.e. (x5,y5) (ICTRS)

ctrl: outbox([1,1],[2,2]) ctr3: outbox([1,8],[2,1])

ctr2: outbox([1,3],[6,4]) ctr4: outbox([3,1],[5.3])
ctr5: outbox([1,7],[8,1])

(B (©)

DeTRS. SWEEP POINT: c=(1,1) SWEEP POINT: c=(1,3)

(delayeq internal 10 DCTRS 10 DCTRS
constraint)

1 9 ctr2 9 ctrs
ctrz 8] ctr5 8 Lo ctr3
CtrS 7 ctr3 7 tr5 ctrd
e 6 ctr4 Lo

ctr3 5 5 s | ACTRS
ctrd 4 { ACTRS 4 21 2

1 ctrl i ctrl

KTRS . 4 o

active internal : [ : T

constraint) L betrkyorg J' - CONFLICT " fotrt et : | CONFLICT

12345678
> ()

SWEEP POINT: c=(3,1)

[ ]

> (B

SWEEP POINT: c=(1,8)

DCTRS DCTRS 10 DCTRS
ctr3 9
ctra glcy3l

1 ACTRS B ACTRS
ACTRS ctr3 6 ctrd
ctr5 ctr5 5 ctr5
ctr2 ctr2 4 ctr2
ol ot 3 CONFLICT
CONFLICT CONFLICT 2

1

DCTRS DCTRS 10 7] DCTRS
;Z T
9 422 ° “
8| ctr3
ACTRS | ACTRS = 5| ACTRS
ctr4 ctr4 6 T |ctra
ctr5 5 ctr5 5 T | etrs
ctr2 4 ! ctr2 4 T fetr2
CONFLICT 3 _ 1] conFLiCT 3 _i..] CONFLICT
ctr2 L P i) ] ctrs 20 L
4503 456 7 8 A8 3 456 7 8
(K L

Fig. 3. lllustration of the lexicographic sweep algorithm for agtjng the minimum value of the

abscissa of rectangle



PROCEDURE FilterCtrs(k, O, S,C) : bool

1. nonfiz < true /I fixpoint not yet reacheg
2: while nonfiz do
3. nonfiz < false /l assumes no filtering will be done
4: forall o€ Odo
5: I+ U,cc GenOutboxes(e, 0, 0.sid) /I build the set of outboxes an
6: I — I UUy< 4 POSsible outhoxes corresponding to holes.irid]
7 for d <— 0to k —1do
8 if =PruneMin(o,d, k, I) V —PruneMax(o, d, k, I') then
9: return false /I no feasible origir
10: else ifo.x was prunedhen
11: nonfiz < true /I fixpoint not yet reacheg
12: end if
13: end for
14:  end for
15: end while
16: return true /l feasible origin
PROCEDURE PruneMin(o,d, k, I) : bool
1. b« true /I b = true while we have not failed
2. c+—o.x /'initial position of the point
3n—ox+1 [/l upper limits+1 in the different dimensions
4: whilebA3f el |ce fdo
5. n < min(n, f.t+ f.1) /I update vector. according to an outbox containinge
6. b+« false /I no new point to jump to yet
7. for j «— k — 1downto0do
8: j — (j+d) mod k // rotation wrt.d, k
9: c[j’] « nlj’] Il use vectom to jump
10: n[j'] —oz[j'] +1 Il reset component of to maximum value
11 if c[j'] < o.x[j'] then
12: b « true /I jump target found
13: j«—0 /I exit for loop
14: else
15: cli’] < o.z[j’] I reset component af, for exhausted a dimension
16: end if
17:  end for
18: end while
19: if b then
20:  o.x[d] < max(o.x[d], c[d])
21: endif
22: return b

Algorithm 1. FilterCtrs is the main filtering algorithm associated with
geost(k,0,S,C), wherek, O, S and C resp. correspond to the number of di-
mensions, to the objects, to the shapes and to the externaigjdcal constraints.
PruneMin adjusts the lower bound of th&" coordinate of the origin of objeat
where [ is the set of outboxes associated with obje¢since PruneMax is similar

to PruneMin it is omitted). The given fixpoint loop is an over-simplifizat. The
implementation maintains a set of objects that need figeNidhenever an objeet is
pruned, all non-fixed objects connectedtby an external constraint are added to this
set. When the set becomes empty, the fixpoint is reached.

9



— We maintain the set ddctive outboxesorresponding to all outboxeéstr, € ZC,
such thatc is between its lexicographically smallest and largestdsiiele points.
This set is initially empty.

— Whenc is initialized in line 2 as well as whenis incremented in lines 7-17, the
relevant events up to pointfrom the event point series are processed, and the
corresponding outboxes are added to or deleted from thd aetive outboxes.

— Inline 4, only the active outboxes are considered.

Example 3.Fig. 3 illustrates thé:-dimensional lexicographic sweep algorithm in the contéxt
k = 2. Parts (A) and (B) provide the variables of the problem (itlee abscissa and ordinate
of each rectangle:, r2, rs3, r4 andrs) as well as the non-overlapping constraint between the
five previous rectangles. On Part (D) we have representesktheme possible feasible positions
of each rectangle (i.e., rectanglesto r.): for instance the leftmost lower corner of rectangle
r1 can only be fixed at positiond, 2), (1, 3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4),
(4,2), (4,3) and(4,4). Parts (C) to (L) of Fig. 3 detail the different steps of thgaaithm for
adjusting the minimum value of the abscissa of rectanglePart (C) provides the outboxes
associated with the fact that we want to prune the coordinaites: constraintsctry, ctra, ctrs
and ctr4 resp. correspond to the fact that rectangleshould not overlap rectangles, s, s
andr4, while constraintctrs represents the fact that the ordinatergfshould be different from
7. Part (D) represents the initialisation phase of the aloriwhere we have all five outboxes
with their respective lexicographically smallest infédsipoint (i.e.,(1, 1) for ctrq, (1, 3) for
ctra, (1,7) for ctrs, (1, 8) for ctrs and(3, 1) for ctrs). Part (E) represents the first step of the
sweep algorithm where we start the traversal of the placespate at point = (1, 1). We first
transfer to the list of active outboxes all outboxes for vahile first lexicographically smallest
infeasible point is lexicographically greater than or ddoathe current position of the sweep
¢ = (1,1) (i.e., constraintctr; = outbox([1, 1], [2,2])). We then search through the list of
active constraints (represented on the figure by a box waHagend ACTRS on top of it) the
first constraint for whiclk: = (1, 1) is infeasible. In fact, sincetr; is infeasible (represented on
the figure by a box with the legend CONFLICT on top of it) we carepthe vectorf = (3, 3)
that tells how to get the next potentially feasible pointtie tifferent dimensions. Consequently
the sweep moves to the next positioh 3) (see Part (F)) and the process is repeated until we
finally find a feasible point for all outboxes (i.e., poift, 8) in Part (L)). Note that, when the
lexicographically largest infeasible point associatethvain active outbox is lexicographically
less than the current position of the sweep, we remove thati@nt from the list of active
outboxes. This is for instance the case in Part (I), whereen®we constraintirs from the list

of active outboxes (since its lexicographically large$éasible point(2, 8) is lexicographically
less than the position of the sweep-= (3, 1)).

Complexity. Rather than analysing the complexity of thenst kernel for a fixedk,
which depends both on the type of each external constrami {he complexity of a
given external constraint for generating all its correspog outboxes as well as their
number), we rather focus dPruneMin for adjusting the minimum value of th&”
coordinate of the origin of an object. Assuming that the mmaxin number of outboxes
is equal ton we give an upper bound on the maximum number of jum@rafieMin
(i.e., the maximum number of times the sweep is moved).

First note that we always jump to an upper border (+1) of abafi.e., see line 5
of PruneMin) or that we reset some coordinates of the sweep to its minivalue (i.e.,
see line 15 oPruneMin). Consequently, all coordinates of the sweep are alwayalequ
to an upper border (+1) of some outboxes or to a minimum plesgdlue. Since we

10



want to evaluate the maximum number of jumps, let us assuatéahevery dimension
d (0 < d < k) the upper limits of all the: outboxes are distinct. Having this in
mind we can construct a maximum @f + 1)* points. Even if we found a systematic
construction where this number of jumps is reached, theop@dnce evaluation of
Section 5 indicates that we can handle a reasonable numbbjeafts fork = 2, 3, 4.

From a memory consumption point of view, the algorithm ordgards the coor-
dinates of the sweep from one invocation to the next, in ondéto restart the search
from scratch (i.e.2k points for each object).

Handling Time. Given an objecb € O of geost, the sweep algorithm that we have
introduced in the previous section can be easily adaptecanalld the start in time
o.start, duration in timeo. duration and end in time.end. Beside maintaining bound
consistency for the constraintend = o.start + o.duration, we add an extrdme
dimension to the geometric coordinates of objedRoughly, this new time coordinate
correspondste.start resp.o.end depending on whether we are adjusting the minimum
or maximum.

Handling Polymorphism. In order to handle the fact that objects can have several
potential shapes we modify the previous algorithm in thiofeing way. For adjusting
the minimum value of the coordinate of the origin of an objéett has more than one
shape we call the sweep algorithm for each potential shaffeeadbject (i.e., for each
value of its shape variable). Then we take the smallest miningalue obtained (i.e.,
we use constructive disjunction) and prune the shape \laridtan object if we did not
find any feasible point for a given potential shape of thatobj

Other Internal Constraints. The standard representation of geometrical constraints
given in Section 3 is an over-simplification. For some caists, e.g. distance con-
straints, outboxes are not a suitable representation gasethof forbidden coordinates
cannot be covered by a small number of boxes. Therefore ghstraint kernel inter-
nally handles other representations of necessary condijtiaith an appropriate internal
API. For details, see the technical report [5].

5 Performance Evaluation

We evaluate the implementatiaf the geost kernel from three perspectives:

Wanting to measure the speed and the scalability of the saigepithm for find-
ing a first solution on loosely constrained placement proklé.e., 20% spare space),
we generated one set of random problem instances: df-dimensional boxes for
k € {2,3,4} involving t € {1,16,256,1024} distinct types of boxes, and fon <
{1024, 2048, ...,262144}. The results fork = 2 are shown in Fig. 4 (top left) and
indicates that the approach is sensible to the number dhdigypes of boxes. It can
typically pack1024 2D, 3D and 4D distinct boxes in at ma&i0 msec. The longest

6 The experiments were run in SICStus Prolog 4 compiled with-62 version 4.0.2 on a 3GHz
Pentium IV with 1MB of cache.

11



time, 13694 seconds (close t@ hours), was obtained for packiri$2144 4D paral-
lelepipeds (ovet million domain variables) with a memory consumption of 338.M

Wanting to get an idea of the performance of thwest kernel on very tight place-
ment problems (i.e., 0% spare space), we consideregtfect squared squares prob-
lem[1, 6] as well as th&D pentominoes problefi]:

— A perfect squared square of orderis a square that can be tiled withsmaller
squares where each of the smaller squares has a differegéirgize. We used the
data available (i.e., the size of the small squares to pack) the catalogue [8] and
tested the correspondir§7 instances. The labelling strategy is roughly to repeat
the following, first for thex dimension, then for thge dimension:

1. Find the smallest position where some square can be placed
2. Find a square to place in that position.

— Pentominoesre pieces made df connected unit cubes laid on a plane surface.
Their shapes look like th&2 lettersF', I, L, P, N, T,U,V, W, X,Y andZ. We
considered the problem of finding the different ways of mgti2 distinct shapes
that can be reflected and rotated in a box having a volun) afit cubes. Our

labelling strategy is roughly to repeat the following:
1. Find a slot in the space that has not yet been filled by soeeepi
2. Find a piece that can fill that slot.

Fig. 4 (top right) and Table 1 respectively report, for theagd squares and the
pentominoes problems, the time and number of backtrackesdaloring all the search
spacé without breaking any symmetry. For the squared squaresgrsbthe maxi-
mum time of1585 seconds was spent on problds) on the other hand,48 problems
were completely solved withii0 seconds. For the 3D pentomino packing instances,
performance results for comparison can be found in [7]. Hanghey stop the search
when the first 100 solutions have been found, so the res@ltsrdy partly comparable.

Finally, wanting to compare theecost kernel with a recent exact state of the art
method for the 2D orthogonal packing problem [4], we reusedldenchmarks pro-
posed by Clautiaux et al. [9]. This is a feasibility problemigh consists in determining
whether a set of rectangles that cannot be rotated, can Begbacnot into a rectangle
of fixed size. In these instances the discrepancy betweesutimeof the areas of the
rectangles to pack and the area of the big rectangle vary ®%no 20%. We havé1l
instances involving betweelt) and23 rectangles. Moreover, from thedé instances,
26 instances are not feasible. In order to break symmetriegdest multiple rectangles
of the same shape we added lexicographic ordering contstraith : coordinates were
labelled followed by ally coordinates, by decreasing rectangle size. Values wexw tri
by increasing value. Fig. 4 (bottom) compares our resultis thie ones reported in [4].
Note that the sequence order for the curves differs, sineéntances of each curve
are ordered by increasingvalue. We solved all instances and are comparable with [4],
althoughs instances are much easier for [4] arttinstances are much easier for us.

Note that for the last three problems (i.e., Squared SquBe®ominoes and 2D
orthogonal packing) extra filtering algorithms mostly kdhe® cumulative relaxation
were integrated within our kernel. Since this paper focsigsethe constraint kernel
and because of space limitations these methods were ndedeta

” Finding all solutions and proving that there is no other tofu

12



6 Related Work and Future Directions

The rectangles packing problem has been studied by Clagtaal. [9, 4] where schedul-
ing-based reasoning is used [1]. The use of sweep algorithrasnstraint filtering
algorithms was introduced in [3] and applied to the non-apgring 2D rectangles con-
straints. This paper generalizes and extends that workverakeways.

— The 2D sweep is generalized to a lexicographic sweep, intkp# of the number
of dimensions.

— The notion of forbidden regions for non-overlapping reglas is generalized to
necessary conditions for general geometric constraints.

The idea of generating necessary conditions is reminissféntlexicals [10], a.k.a.
projection constraints [11]. An indexical for a constraiiit,...,z,) computes a
unary constraint on a single variahblg, i.e. a setS of values such that = z; € S,
in reaction to domain changesin, ..., x,. The constraint kernel then immediately
enforcese; € S. Our kernel generalizes this in two ways:

— We compute necessary conditions in the forni-afimensional forbidden regions.

— We treat all such forbidden regions, for a selected objedtsrape, in one run of
the sweep algorithm. Projecting a single forbidden regiomie coordinate often
does not yield any pruning, whereas considering the unidarbfdden regions is
much more effective.

Dal Palu et al. in [12] proposed a constraint solver spegdlfor 3D discrete do-
mains. Their solver was targeted to the study of problemsateoular, chemical and
crystal structures. Our work, however, remains in the rsgttif mainstream finite do-
main constraint systems, whereas our kernel internallgles#-dimensional objects.

Even though thegjeost kernel has been designed over discrete domains, it could
rather easily be extended to continuous domains with thedooates of the objects
approximated by the floating-point numbé@&rsSince switching fronN to F may cause
rounding errors at this level, the sweep algorithm needsitale these rounding errors
when moving the sweep out of an outbox constraint. If thegmtipns of the forbidden
regions on all dimensions are intervals of real bounds weptaoeed as follows. On
continuous domains, an outbox will have an very thin strighat border where the
feasibility of the corresponding internal constraint iknown. The region inside this
strip is strictly forbidden, and outside, the constraistsertainly satisfied. The outbox
must be computed including this strip, by taking lower angamapproximations of
the region’s coordinates. In that case, the solutions aaeagiieed to be valid, but the
solver may not be complete, because it may (rarely) happanttie real forbidden
region allows positions that are forbidden by its approsxtiora

This research was conducted under the European Union pfbiecWMS”, a ma-
jor task of which is to study packing problems in warehouseagament. In this con-
text, our constraint kernel is a step towards being able ptuca a large set of packing
rules in a constraint programming setting. Future work imwes extending our set of
external geometric constraints to include such packingstul

13



7 Conclusion

The main contribution of this paper is a geometrical comstieernel for handling the
location in space and time of polymorphiedimensional objects subject to various
geometrical and time constraints. The constraint kerngéigeric in the sense that one
of its parameters is a set of constraints on subsets of tleeisbjThese constraints are
handled globally by the kernel.

We have presented a sweep algorithm for filtering the atebwf the objects.
Thank to its architecture, new geometric constraints caplbgged into this sweep
algorithm without modifying it. The strong point of this se@algorithm is that it con-
siders all the geometrical constraints for a selected olged shape in one run. As
a first result, more deduction can be performed by combingtg af forbidden points
coming from multiple geometrical constraints. Secondlyan handle within one single
constraint problems involving up several tens of thousarddbjects without memory
consumption problems, which is often a weak point for caistrprogramming envi-
ronment. We have also shown that we could handle tight 2D qulaBement problems,
which were traditionally solved by specific approaches.

Acknowledgements

This research was conducted under European Union Sixthdwark Programme Con-
tract FP6-034691 “Net-WMS”.

configuration |backtracks (1st)|time (1st)|backtracks (all) [time (all) |solutions|
20 x 3 x 1 1434 1840 47381 49740 8
15x4x1 290 560 888060 939060 | 1472
12 x5 x1 1594 1850 3994455 4112870| 4040
10 x 6 x 1 111 260 9688985 10726810 9356
10 x 3 x 2 1267 2370 1203511 1778980 96

6 X5 X2 157 730 n/a n/a n/a

5 x4 x3 3567 14930 n/a n/a n/a

Table 1. Performance evaluation. 3D pentomino packing instandese ih milliseconds. “n/a”
corresponds to a quantity that was not available with a tuesf several hours.

References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order torea@omplex scheduling and
placement problemsviathl. Comput. Modelling17(7):57—73, 1993.

2. N. Beldiceanu, Q. Guo, and S. Thiel. Non-overlapping tairgs between convex poly-
topes. In T. Walsh, editoRroc. CP’2001 volume 2239 of NCS pages 392—-407. Springer-
Verlag, 2001.

3. N. Beldiceanu and M. Carlsson. Sweep as a generic pruagimigue applied to the non-
overlapping rectangles constraints. In T. Walsh, edi®sgc. CP’2001 volume 2239 of
LNCS pages 377-391. Springer-Verlag, 2001.

14



le+09 T T 1le+07

t=1 —— ' ' backtracks
t=16,——— ] time ———
1e+08 (=256 - - - -
16407 t=}024 rrrrrrr 1 1e+06 |
)‘/ g
1le+06 lvid 1
/e 100000
[} Ad
£ 100000 27 E
=] L
10000 //’ 3 10000
s
1000 | 7
~
100 1000
10
1000 10000 100000 1e+06 100
m 0 50 100 150 200 250
100000 100000
time (we) backtracks (we)
time [4] —F— backtracks [4] — 7/—

10000 10000

1000 1000
100 100

10 10

1

. . . . . . . . 1
0 5 10 15 20 25 30 35 40 45 0

Fig. 4. Performance evaluation. Top left: scalabilitye {1, 16, 256, 1024}. Top right: Perfect
Squared Squares, runtime and backtracks. Bottom: 2D QuttaddPacking, runtime (left) and
backtracks (right). Time in milliseconds. In each curve itistances are ordered by increasjng
value.

4. F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A neanstraint programming ap-
proach for the orthogonal packing proble@omputers and Operation Researth appear.

5. N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C.h&ucA generic geometrical
constraint kernel in space and time for handling polymarghtlimensional objects. SICS
Technical Report T2007:08, Swedish Institute of Computzeige, 2007.

6. P.Van Hentenryck. Scheduling and packing in the comgti@nguage cc(FD). In M. Zweben
and M. Fox, editorsintelligent SchedulingMorgan Kaufmann Publishers, 1994.

7. A. Colmerauer and B. Gilleta.  Solving the three-dimenalopentamino puzzle.
Technical report, Laboratoire d’Informatique de Marsgill999. http://www.lim.univ-
mrs.fr/ colmer/ArchivesPublications/Giletta/misc9¥.p

8. C. J. Bouwkamp and A. J. W. Duijvestijn. Catalogue of sienpérfect squared squares of
orders 21 through 25. Technical Report EUT Report 92-WSKEI3dhoven University of
Technology, The Netherlands, November 1992.

9. F. Clautiaux, J. Carlier, and A. Moukrim. A new exact mettor the two-dimensional
orthogonal packing probleniuropean Journal of Operational Researtb appear.

10. Pascal Van Hentenryck, Vijay Saraswat, and Yves Dew@enstraint processing in cc(FD).
Manuscript, 1991.

11. Gregory SidebottomA Language for Optimizing Constraint PropagatioRhD thesis, Si-
mon Fraser University, 1993.

12. Alessandro Dal Pal‘u, Agostino Dovier, and Enrico PbintéA new constraint solver for
3D lattices and its application to the protein folding peabl In Geoff Sutcliffe and Andrei
Voronkov, editorsLogic for Programming, Artificial Intelligence, and Reaguy 12th In-
ternational Conference, LPAR 200%lume 3835 ol.NCS pages 48-63. Springer-Verlag,
2005.

15



