
Net-WMS FP6-034691 
 

Net-WMS D1.4 1 of 5 
 

 
 
 

Net-WMS 
 
 
 
 

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT 
 

Networked Businesses 
 
 
 
 

D4.1 – A catalogue of generic placement constraint in a WMS 
 

 
Due date of deliverable: 31-08-2007 

Actual submission date: 17-10-2007 

 
 

 
Start date of project: 1 September 2006     Duration: 36 

months 
 

 
 

Organisation name of lead contractor for this deliverable: EMN 
       

Project co-funded by the European Commission within the Sixth Framework Programme  

(2006-2009) 



Net-WMS FP6-034691 
 

Net-WMS D1.4 2 of 5 
 

 

COVER AND CONTROL PAGE OF DOCUMENT 

 
Project Acronym: 

 
Net-WMS 

 
Project Full Name: 

 
Towards integrating Virtual Reality and optimisation techniques 
in a new generation of Networked businesses in Warehouse 
Management Systems under constraints 

 
Document id: 

 
D4.1 

 
Document name: 

 
A catalogue of generic placement constraints in a WMS 

 
Document type 
(PU, INT, RE, CO) 

 
PU 

 
Version: 

 
1 

 
Submission date: 

 
17-10-2007 

 
Authors: 

Organisation: 
Email: 

 
Nicolas Beldiceanu (EMN)  
Nicolas.Beldiceanu@emn.fr 

Document type PU = public, INT = internal, RE = restricted, CO = confidential 

 

 
ABSTRACT: 
 
This deliverable is a description regarding the work on the catalogue of generic placement constraints in a 

WMS. 
 
 
 
 
 
 
 
 
 
KEYWORD LIST:  
 

 Net-WMS, WMS, constraint, catalogue. 
 
 
 
 

 

 



Net-WMS FP6-034691 
 

Net-WMS D1.4 3 of 5 
 

 

MODIFICATION CONTROL 

Version Date Status Author 
1 10-17-2007 Final Nicolas Beldiceanu (EMN)  
    

    

    

 
 

Deliverable manager 
 Nicolas Beldiceanu (ARMINES) 

 
 

List of Contributors  
 Nicolas Beldiceanu (ARMINES) 
 Mats Carlsson (SICS) 
 Julien Martin (INRIA) 
 Abder, Aggoun, KLS 

 
 

List of Evaluators 
 François Fages (INRIA) 
 Abder, Aggoun (KLS OPTIM) 
 Philippe Rohou (ERCIM) 
 

 
 



Net-WMS FP6-034691 
 

Net-WMS D1.4 4 of 5 
 

1 Table of Contents 

2.    Summary 
3.    NetWMS Relevant constraints 
4. Published paper about the main non-overlapping 

           constraint 



Net-WMS FP6-034691 
 

Net-WMS D1.4 5 of 5 
 

 

2 Summary 
 
Within the existing catalogue of global constraints (see http://www.emn.fr/x-
info/sdemasse/gccat/index.html) we have identified the already existing global constraints that 
are relevant within the NetWMS project. These constraints correspond to geometrical 
constraints that can be used for expressing non-overlapping constraints (like diffn), necessary 
conditions for non-overlapping (cumulative, cumulatives), symmetry breaking constraints 
(lex_chain_less), load balancing constraints (cumulative_two_d) or placement constraints 
(place_in_pyramid). 
 
Based on collaboration with partners of the projects (KLS, INRIA, SICS) we have introduced 
within the catalogue of global constraints a restricted set of very general packing constraints 
like the diffst and the visible constraints. We have illustrated the possible uses of these two 
global constraints regarding different type of packing problems as well as regarding pallet 
loading and pick up delivery problems. In addition to these generic constraints we have 
introduced positioning constraints like contains_sboxes, coveredby_sboxes, covers_sboxes, 
disjoint_sboxes, inside_sboxes, meet_sboxes, non_overlap_sboxes and overlap_sboxes. 
 
For further information look at the corresponding entries of the global constraint catalogue. 
The relevant constraints are added in an annex of this document. A published paper at 
CP2007 about the main non-overlapping constraint is also given as a second annex of this 
document. 
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4.64 contains sboxes
DESCRIPTION LINKS

Origin Geometry, derived from [227]

Constraint contains sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) contains.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|

Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi contains Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object Oi contains an object Oj with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted boxes sj associated with Oj , there exists a shifted
box si of Oi such that si contains sj . A shifted box si contains a shifted box sj if and
only if, for all dimensions d ∈ DIMS, (1) the start of si in dimension d is strictly less
than the start of sj in dimension d and (2)the end of sj in dimension d is strictly less
than the end of si in dimension d.
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Example

0

B

B

B

B

B

B

B

B

@

2, {0, 1},
*

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 3 x− 〈3, 3〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈5, 5〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈1, 1〉
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Figure 4.133 shows the objects of the example. Since O1 contains both O2 and
O3, and since O2 contains O3, the contains sboxes constraint holds.

S1
S2

first object
(A) Shape of the (B) Shapes of the

1

2 53

contains both O2 and O3, and O2 contains O3
(D) Three objects O1, O2 and O3, where O1

S3

41

second object
(C) Shape of the

third object

6

5

4

3

2

O1

O3

O2

Figure 4.133: The three objects of the example

Remark One of the eight relations of the Region Connection Calculus [227]. The constraint
contains sboxes is a restriction of the original relation since it requires that each shifted
box of an object is contained by one shifted box of the other object.

See also coveredby sboxes, covers sboxes, disjoint sboxes, equal sboxes,
inside sboxes, meet sboxes, non overlap sboxes, overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, rcc8.
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4.68 coveredby sboxes

DESCRIPTION LINKS

Origin Geometry, derived from [227]

Constraint coveredby sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) coveredby.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
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Holds if, for each pair of objects (Oi, Oj), i < j, Oi is covered by Oj with respect to
a set of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a
set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin
of the shape) with given sizes. More precisely, a shifted box is an entity defined by its
shape id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted
boxes sharing the same shape id. An object is an entity defined by its unique object
identifier oid, shape id sid and origin x.
An object Oi is covered by an object Oj with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted box si of Oi, there exists a shifted box sj of Oj such
that:

Purpose • For all dimensions d ∈ DIMS, (1) the start of sj in dimension d is less than or
equal to the start of si in dimension d, and (2) the end of si in dimension d is
less than or equal to the end of sj in dimension d.

• There exists a dimension d where, (1) the start of sj in dimension d coincide
with the start of si in dimension d, or (2) the end of sj in dimension d coincide
with the end of si in dimension d.

Example
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2, {0, 1},
*

oid− 1 sid− 4 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 1 x− 〈2, 3〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 1 t− 〈3, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈2, 0〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉
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Figure 4.142 shows the objects of the example. Since O1 is covered by both O2

and O3, and since O2 is covered by O3, the coveredby sboxes constraint holds.

Remark One of the eight relations of the Region Connection Calculus [227]. The constraint
coveredby sboxes is a restriction of the original relation since it requires that each shifted
box of an object is covered by one shifted box of the other object.

See also contains sboxes, covers sboxes, disjoint sboxes, equal sboxes,
inside sboxes, meet sboxes, non overlap sboxes, overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, rcc8.
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first object

5321
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(D) Three objects O1, O2 and O3,
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(A) Shape of the

and O2 is covered by O3
where O1 is covered by both O2 and O3,

S1
S4

S3

(C) Shape of the
third object

O3 O1

O2

Figure 4.142: The three objects of the example
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4.69 covers sboxes

DESCRIPTION LINKS

Origin Geometry, derived from [227]

Constraint covers sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) covers.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
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Holds if, for each pair of objects (Oi, Oj), i < j, Oi covers Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object Oi covers an object Oj with respect to a set of dimensions depicted by DIMS
if and only if, for all shifted box sj of Oj , there exists a shifted box si of Oi such that:

Purpose • For all dimensions d ∈ DIMS, (1) the start of si in dimension d is less than or
equal to the start of sj in dimension d, and (2) the end of sj in dimension d is
less than or equal to the end of si in dimension d.

• There exists a dimension d where, (1) the start of si in dimension d coincide
with the start of sj in dimension d, or (2) the end of si in dimension d coincide
with the end of sj in dimension d.

Example
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2, {0, 1},
*

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 4 x− 〈2, 3〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 1 t− 〈3, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈2, 0〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

+

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 4.143 shows the objects of the example. Since O1 covers both O2 and O3,
and since O2 covers O3, the covers sboxes constraint holds.

Remark One of the eight relations of the Region Connection Calculus [227]. The constraint
covers sboxes is a relaxation of the original relation since it requires that each shifted
box of an object is covered by one shifted box of the other object.

See also contains sboxes, coveredby sboxes, disjoint sboxes, equal sboxes,
inside sboxes, meet sboxes, non overlap sboxes, overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, rcc8.
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covers both O2 and O3, and O2 covers O3
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Figure 4.143: The three objects of the example
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4.74 cumulative two d
DESCRIPTION LINKS

Origin Inspired by cumulative and diffn.

Constraint cumulative two d(RECTANGLES, LIMIT)

Argument(s) RECTANGLES : collection
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B

@

start1−dvar,
size1−dvar,
last1−dvar,
start2−dvar,
size2−dvar,
last2−dvar,
height−dvar

1

C

C

C

C

C

C

C

C

A

LIMIT : int

Restriction(s) require at least(2, RECTANGLES, [start1, size1, last1])
require at least(2, RECTANGLES, [start2, size2, last2])
required(RECTANGLES, height)
RECTANGLES.size1 ≥ 0
RECTANGLES.size2 ≥ 0
RECTANGLES.height ≥ 0
LIMIT ≥ 0

Purpose
Consider a set R of rectangles described by the RECTANGLES collection. Enforces that
at each point of the plane, the cumulated height of the set of rectangles that overlap that
point, does not exceed a given limit.

Example

0

B

B

@

*

start1− 1 size1 − 4 last1− 4 start2 − 3 size2− 3 last2 − 5 height− 4,
start1− 3 size1 − 2 last1− 4 start2 − 1 size2− 2 last2 − 2 height− 2,
start1− 1 size1 − 2 last1− 2 start2 − 1 size2− 2 last2 − 2 height− 3,
start1− 4 size1 − 1 last1− 4 start2 − 1 size2− 1 last2 − 1 height− 1

+

, 4

1

C

C

A

Part (A) of Figure 4.154 shows the 4 parallelepipeds of height 4, 2, 3 and 1 associ-
ated with the items of the RECTANGLES collection (parallelepipeds since each rectangle has
also a height). Part (B) gives the corresponding cumulated 2-dimensional profile, where
each number is the cumulated height of all the rectangles that contain the corresponding
region. The cumulative two d constraint holds since the heighest peak of the cumulated
2-dimensional profile does not exceed the upper limit 4 imposed by the last argument of
the cumulative two d constraint.

Usage The cumulative two d constraint is a necessary condition for the diffn constraint in 3
dimensions (i.e., the placement of parallelepipeds in such a way that they do not pairwise
overlap and that each parallelepiped has his sides parallel to the sides of the placement
space).

Algorithm A first natural way to handle this constraint would be to accumulate the
compulsory part [171] of the different rectangles in a quadtree [250]. To each leave of the
quadtree we associate the cumulated height of the rectangles containing the corresponding
region.
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See also cumulative, diffn, bin packing.

Key words characteristic of a constraint: derived collection.
constraint type: predefined constraint.
filtering: quadtree, compulsory part.
geometry: geometrical constraint.

1 2 3 4
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3

4

5

1

(B)(A)

2
3

4

3

1

4

<5

3
2

Figure 4.154: Two representations of a 2-dimensional cumulated profile
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4.71 cumulative
DESCRIPTION LINKS GRAPH AUTOMATON

Origin [1]

Constraint cumulative(TASKS, LIMIT)

Argument(s) TASKS : collection(origin−dvar, duration−dvar, end−dvar, height−dvar)
LIMIT : int

Restriction(s) require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a
set T of tasks described by the TASKS collection. The cumulative constraint enforces
that at each point in time, the cumulated height of the set of tasks that overlap that
point, does not exceed a given limit. It also imposes for each task of T the constraint
origin + duration = end.

Example

0

B

B

B

B

@

*

origin − 1 duration − 3 end− 4 height− 1,
origin − 2 duration − 9 end− 11 height− 2,
origin − 3 duration − 10 end− 13 height− 1,
origin − 6 duration − 6 end− 12 height− 1,
origin − 7 duration − 2 end− 9 height− 3

+

, 8

1

C

C

C

C

A

Figure 4.146 shows the cumulated profile associated with the example. To each
task of the cumulative constraint corresponds a set of rectangles coloured with the
same colour: the sum of the lengths of the rectangles corresponds to the duration of
the task, while the height of the rectangles (i.e., all the rectangles associated with a
task have the same height) corresponds to the resource consumption of the task. The
cumulative constraint holds since at each point in time we don’t have a cumulated
resource consumption strictly greater than the upper limit 8 enforced by the last argument
of the cumulative constraint.

Algorithm [171, 100, 69, 182]. Within the context of linear programming, the reference [149] provides
a relaxation of the cumulative constraint.

A necessary condition for the cumulative constraint is obtained by stating a
disjunctive constraint on a subset of tasks T such that, for each pair of tasks of T ,
the sum of the two corresponding minimum heights is strictly greater than LIMIT. This can
be done by applying the following procedure:

• Let h be the smallest minimum height strictly greater than $ LIMIT
2 % of the tasks of the

cumulative constraint. If no such task exists then the procedure is stopped without
stating any disjunctive constraint.
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• Let Th denotes the set of tasks of the cumulative constraint for which the minimum
height is greater than or equal to h. By construction, the tasks of Th cannot overlap.
But we can eventually add one more task as shown by the next step.

• When it exists, we can add one task that does not belong to Th and such that its
minimum height is strictly greater than LIMIT− h. Again, by construction, this task
cannot overlap all the tasks of Th.

When the tasks are involved in several cumulative constraints more sophisticated meth-
ods are available for extracting disjunctive constraints [10, 9].

See also disjunctive, diffn, bin packing, cumulative product,
coloured cumulative, cumulative two d, coloured cumulatives, cumulatives,
cumulative with level of priority, cumulative convex, calendar.

Key words characteristic of a constraint: core, automaton, automaton with array of counters.
complexity: sequencing with release times and deadlines.
constraint type: scheduling constraint, resource constraint, temporal constraint.
filtering: linear programming, compulsory part.
problems: producer-consumer.
puzzles: squared squares.
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Figure 4.146: Resource consumption profile
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Arc input(s) TASKS

Arc generator SELF &→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT &→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets

SUCC &→
2

4

source,

variables − col

„

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

«

3

5

Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model The first graph constraint enforces for each task the link between its origin, its duration and
its end. The second graph constraint makes sure, for each time point t corresponding to
the start of a task, that the cumulated heights of the tasks that overlap t does not exceed the
limit of the resource.

Parts (A) and (B) of Figure 4.147 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. On the one hand, each source vertex
of the final graph can be interpreted as a time point. On the other hand the successors of
a source vertex correspond to those tasks that overlap that time point. The cumulative
constraint holds since for each successor set S of the final graph the sum of the heights of
the tasks in S does not exceed the limit LIMIT = 8.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewriteNARC = |TASKS| toNARC ≥ |TASKS|. This leads to simplify
NARC toNARC.
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(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

Figure 4.147: Initial and final graph of the cumulative constraint
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Automaton Figure 4.148 depicts the automaton associated with the cumulative constraint. To each
item of the collection TASKS corresponds a signature variable Si that is equal to 1.

s {C[ORI ]=C[ORI ]+HEIGHT ,

i       i        i{C[END ]=C[END ]−HEIGHT }

$

1,

t:
arith_sliding(C,<=,LIMIT)

{C[_]=0}

i       i        i

Figure 4.148: Automaton of the cumulative constraint
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4.89 diffn
DESCRIPTION LINKS GRAPH

Origin [27]

Constraint diffn(ORTHOTOPES)

Synonym(s) disjoint1, disjoint2.

Type(s) ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose
Generalised multi-dimensional non-overlapping constraint: Holds if, for each pair of
orthotopes (O1, O2),O1 and O2 do not overlap. Two orthotopes do not overlap if there
exists at least one dimension where their projections do not overlap.

Example

0

@

*

orth− 〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉 ,
orth− 〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 6〉 ,
orth− 〈ori− 9 siz− 2 end− 11, ori− 4 siz− 3 end− 7〉

+

1

A

Figure 4.183 represents the respective position of the three rectangles of the exam-
ple. The co-ordinates of the leftmost lowest corner of each rectangle are stressed in bold.
The diffn constraint holds since the three rectangles do not overlap.

54321

1

6

5

4

3

2

109876

R1

R3
R2

Figure 4.183: The three rectangles of the example

Usage The diffn constraint occurs in placement and scheduling problems. It was for instance
used for scheduling problems where one has to both assign each non-preemptive task to
a resource and fix its origin so that two tasks, which are assigned to the same resource,
do not overlap. A practical application from the area of the design of memory-dominated
embedded systems [272] can be found in [273]. Together with arithmetic and cumulative
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constraints, the diffn constraint was used in [271] for packing more complex shapes such
as angles. Figure 4.184 illustrates the angle packing problem on an instance involving 10
angles taken from [271].

One other packing problem attributed to S. Golomb is to find the smallest square that
can contain the set of consecutive squares from 1 × 1 up to n × n so that these squares
do not overlap each other. A program using the diffn constraint was used to construct
such a table for n ∈ {1, 2, . . . , 25, 27, 29, 30} in [20]. Algorithms and lower bounds for
solving the same problem can also be respectively found in [165] and in [60]. In that paper,
Richard E. Korf also considers the problem of finding the minimum-area rectangle that can
contain the set of consecutive squares from 1 × 1 up to n × n.

Remark When we have segments (respectively rectangles) the diffn constraint is referenced under
the name disjoint1 (respectively disjoint2) in SICStus Prolog [67].

It was shown in [275, page 137] that, finding out whether a non-overlapping constraint
between a set of rectangles has a solution or not is NP-hard. This was achieved by reduction
from sequencing with release times and deadlines.

Algorithm Checking whether a diffn constraint for which all variables are fixed is satisfied or
not is related to the Klee’s measure problem: given a collection of axis-aligned mul-
ti-dimensional boxes, how quickly can one compute the volume of their union. Then the
diffn constraint holds if the volume of the union is equal to the sum of the volumes of the
different boxes.

A first possible method for filtering is to use constructive disjunction. The idea is to try
out each alternative of a disjunction (e.g., given two orthotopes o1 and o2 that should not
overlap, we successively assume for each dimension that o1 finishes before o2, and that
o2 finishes before o1) and to remove values that were pruned in all alternatives. For the
two-dimensional case of diffn a second possible solution used in [247] is to represent
explicitly the two-dimensional domain of the origin of each rectangle by a quadtree [250]
and to accumulate all forbidden regions within this data structure. As for conventional
domain variables, a failure occurs when a two-dimensional domain get empty. A third
possible filtering algorithm based on sweep is described in [22].

The thesis of J. Nelissen [199] considers the case where all rectangles have the same
size and can be rotated from 90 degrees (i.e., the pallet loading problem.). For the
n-dimensional case of diffn a filtering algorithm handling the fact that two objects do
not overlap is given in [30].

Extensions of the non-overlapping constraint to polygons and to more complex shapes
are respectively described in [30] and in [243]. Specialised propagation algorithms for
the squared squares problem [59] (based on the fact that no waste is permitted) are given
in [123] and in [122].

The cumulative constraint can be used as a necessary condition for the diffn constraint.
Figure 4.186 illustrates this point for the two-dimensional case. A first (respectively sec-
ond) cumulative constraint is obtained by forgetting the y-co-ordinate (respectively the
x-co-ordinate) of the origin of each rectangle occurring in a diffn constraint. Parts (B)
and (C) respectively depict the cumulated profiles associated with the projection of the
rectangles depicted by part (A) on the x and y axes. The cumulative constraint is a nec-
essary but not sufficient condition for the two-dimensional case of the diffn constraint.
Figure 4.187 illustrates this point on an example taken from [52] where one has to place
the 8 rectangles R1, R2, R3, R4, R5, R6, R7, R8 of respective size 5 × 2, 8 × 2, 6 × 1,



602 NARC, SELF ;NARC,CLIQUE( !=)

1 2 3 4 5 6 7 8 9

9

5

6

7

8

1

2

3

4

A6
A9

A10

A2 A1

A5A4

A7

A3

A8

Figure 4.184: A solution for the angle packing problem of items A1 = [2, 4, 3, 1],
A2 = [2, 2, 1, 3], A3 = [1, 3, 3, 2], A4 = [2, 1, 4, 3], A5 = [1, 7, 2, 2], A6 = [1, 2, 5, 5],
A7 = [6, 2, 2, 3], A8 = [4, 2, 2, 1], A9 = [3, 1, 1, 4], A10 = [3, 2, 1, 1].

Figure 4.185: A hard instance from [199, page 165]: A solution for packing 99 rectan-
gles of size 5 × 9 into a rectangle of size 86 × 52
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5 × 1, 2 × 1, 3 × 1, 2 × 2 and 1 × 2 in a big rectangle of size 12 × 4. As shown by
Figure 4.187 there is a cumulative solution where R8 is splitted in two parts but M. Hujter
proves in [151] that their is no solution where no rectangle is splitted.
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Figure 4.186: Looking from the perspective of the cumulative constraint in a two-di-
mensional rectangles placement problem
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Figure 4.187: Illustrating the necessary but not sufficient placement condition

In the context of n parallelepipeds that have to be packed [127, 179] within a box of sizes
X × Y ×Z one can proceed as follows for stating three cumulative constraints. The ith

(i ∈ [1, n]) parallelepiped is described by the following attributes:

• ox i, oy i, oz i (i ∈ [1, n]) the co-ordinates of its origin on the x, y and z-axes.
• sx i, sy i, sz i (i ∈ [1, n]) its sizes on the x, y and z-axes.
• px i, py i, pz i (i ∈ [1, n]) the surfaces of its projections on the planes yz, xz, and xy
respectively equal to sy isz i, sx isz i, and sx isy i.

• vi its volume (equal to sx isy isz i).

For the placement of n parallelepipeds we get the following necessary conditions that re-
spectively correspond to three cumulative constraints on the planes yz, xz, and xy:
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8

>

<

>

:

∀i ∈ [1, X] :
P

j|oxj≤i≤oxj+sxj−1 px j ≤ Y Z

∀i ∈ [1, Y ] :
P

j|oyj≤i≤oyj+syj−1 pyj ≤ XZ

∀i ∈ [1, Z] :
P

j|ozj≤i≤ozj+szj−1 pz j ≤ XY

Used in diffn column, diffn include, place in pyramid.

See also diffst, cumulative, orth link ori siz end, two orth do not overlap,
calendar.

Key words characteristic of a constraint: core.
complexity: sequencing with release times and deadlines.
constraint type: decomposition.
filtering: Klee measure problem, sweep, quadtree, compulsory part,
constructive disjunction.

geometry: geometrical constraint, orthotope, polygon, non-overlapping.
problems: pallet loading.
puzzles: squared squares.
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Arc input(s) ORTHOTOPES

Arc generator SELF *→collection(orthotopes)

Arc arity 1

Arc constraint(s) orth link ori siz end(orthotopes.orth)

Graph property(ies) NARC= |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE( !=) *→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) two orth do not overlap(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) NARC= |ORTHOTOPES| ∗ |ORTHOTOPES|− |ORTHOTOPES|

Graph model The diffn constraint is expressed by using two graph constraints:

• The first graph constraint enforces for each dimension and for each orthotope the link
between the corresponding ori, siz and end attributes.

• The second graph constraint imposes each pair of distinct orthotopes to not overlap.

Parts (A) and (B) of Figure 4.188 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the NARC graph
property, the arcs of the final graph are stressed in bold.

ORTHOTOPES

1

2

3

NARC=6

1:2,2,4
  1,3,4

2:4,4,8
  3,3,6

3:9,2,11
  4,3,7

(A) (B)

Figure 4.188: Initial and final graph of the diffn constraint
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Signature Since |ORTHOTOPES| is the maximum number of vertices of the final graph of the first graph
constraint we can rewrite NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. This
leads to simplifyNARC toNARC.
Since we use the CLIQUE( !=) arc generator on the ORTHOTOPES collection,
|ORTHOTOPES| · |ORTHOTOPES| − |ORTHOTOPES| is the maximum number of ver-
tices of the final graph of the second graph constraint. Therefore we can rewrite
NARC = |ORTHOTOPES| · |ORTHOTOPES|− |ORTHOTOPES| toNARC ≥ |ORTHOTOPES| ·
|ORTHOTOPES|− |ORTHOTOPES|. Again, this leads to simplifyNARC toNARC.
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4.92 diffst

DESCRIPTION LINKS

Origin Generalisation of diffn.

Constraint diffst(K, DIMS, OBJECTS, SBOXES)

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection

0

B

B

B

B

B

B

@

oid−int,
sid−dvar,
x− VARIABLES,
start−dvar,
duration−dvar,
end−dvar

1

C

C

C

C

C

C

A

SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
require at least(2, OBJECTS, [start, duration, end])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
OBJECTS.duration ≥ 0
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
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Holds if (1) the difference between the end in time and the start in time of each object is
equal to its duration in time, and if (2) for each pair of objects (Oi, Oj), i < j, Oi and
Oj do not overlap with respect to a set of dimensions depicted by DIMS as well as to the
time axis. Oi and Oj are objects that take a shape among a set of shapes. Each shape is
defined as a finite set of shifted boxes, where each shifted box is described by a box in
a K-dimensional space at a given offset (from the origin of the shape) with given sizes.
More precisely, a shifted box is an entity defined by its shape id sid, shift offset t, and
sizes l. Then, a shape is defined as the union of shifted boxes sharing the same shape
id. An object is an entity defined by its unique object identifier oid, shape id sid and
origin x.
An objectOi does not overlap an objectOj with respect to a set of dimensions depicted
by DIMS as well as to the time axis if and only if:

Purpose • The start in time of Oi is greater than or equal to the end in time of Oj .
• The start in time of Oj is greater than or equal to the end in time of Oi.

• For all shifted box si associated with Oi and for all shifted box sj associated
withOj there exists a dimension d ∈ DIMS such that the start of si in dimension
d is greater than or equal to the end of sj in dimension d, or the start of sj in
dimension d is greater than or equal to the end of si in dimension d.

Example
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2, {0, 1},
*

oid− 1 sid− 1 x− 〈1, 2〉 start− 0 duration − 1 end− 1,
oid− 2 sid− 5 x− 〈2, 1〉 start− 0 duration − 1 end− 1,
oid− 3 sid− 8 x− 〈4, 1〉 start− 0 duration − 1 end− 1

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 1 t− 〈0, 1〉 l− 〈1, 2〉 ,
sid− 1 t− 〈1, 2〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 3〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 3 t− 〈1, 1〉 l− 〈1, 2〉 ,
sid− 3 t− 〈−2, 2〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈2, 1〉 l− 〈1, 3〉 ,
sid− 5 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 5 t− 〈1, 1〉 l− 〈1, 1〉 ,
sid− 5 t− 〈0, 2〉 l− 〈2, 1〉 ,
sid− 6 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 6 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 6 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 7 t− 〈0, 0〉 l− 〈3, 2〉 ,
sid− 8 t− 〈0, 0〉 l− 〈2, 3〉

+
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Parts (A), (B) and (C) of Figure 4.191 respectively represent the potential shapes
associated with the three objects of the example. Part (D) shows the position of the three
objects of the example, where the first, second and third objects were respectively assigned
shapes 1, 5 and 8. The coordinates of the leftmost lowest corner of each object are stressed
in bold. The diffst constraint holds since the three objects do not overlap: even if the
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time intervals associated with each object overlap (i.e., they are in fact identical), their
corresponding shapes do not overlap (i.e., see part (D) if Figure 4.191).
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Figure 4.191: The three objects of the example

Usage The diffst constraint allows to model directly a large number of placement problems.
Figure 4.192 sketches ten typical use of the diffst constraint:

• The first case (A) corresponds to a non-overlapping constraint among three segments.
• The second, third and fourth cases (B,C,D) correspond to a non-overlapping con-
straint between rectangles where (B) and (C) are special cases where the sizes of all
rectangles in the second dimension are equal to 1; this can be interpreted as a ma-
chine assignment problem where each rectangle corresponds to a non-pre-emptive
task that has to be placed in time and assigned to a specific machine so that no two
tasks assigned to the same machine overlap in time. In Part (B) the duration of each
task is fixed, while in Part (C) the duration depends on the machine to which the task
is actually assigned. This dependence can be expressed by the element constraint,
which specifies the dependence between the shape variable and the assignment vari-
able of each task.

• The fifth case (E) corresponds to a non-overlapping constraint between rectangles
where each rectangle can have two orientations. This is achieved by associating with
each rectangle two shapes of respective sizes l · h and h · l. Since their orientation is
not initially fixed, an element lesseq constraint can be used for enforcing the three
rectangles to be included within the bounding box defined by the origin’s coordinates
1, 1 and sizes 8, 3.
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• The sixth case (F) corresponds to a non-overlapping constraint between more com-
plex objects where each object is described by a given set of rectangles.

• The seventh case (G) describes a rectangle placement problem where one has to first
assign each rectangle to a strip so that all rectangles that are assigned to the same
strip do not overlap.

• The eighth case (H) corresponds to a non-overlapping constraint between paral-
lelepipeds.

• The ninth case (I) can be interpreted as a non-overlapping constraint between paral-
lelepipeds that are assigned to the same container. The first dimension corresponds
to the identifier of the container, while the next three dimensions are associated with
the position of a parallelepiped inside a container.

• Finally the tenth case (J) describes a rectangle placement problem over three consec-
utive time-slots: rectangles assigned to the same time-slot should not overlap in time.
We initially start with the three rectangles 1, 2 and 3. Rectangle 3 is no more present
at instant 2 (the arrow ↓ within rectangle 3 at time 1 indicates that rectangle 3 will
disappear at the next time-point), while rectangle 4 appears at instant 2 (the arrow ↑
within rectangle 4 at time 2 denotes the fact that the rectangle 4 appears at instant 2).
Finally rectangle 2 disappears at instant 3 and is replaced by rectangle 5.

Algorithm A sweep-based filtering algorithm for this constraint is described in [25]. Unlike previous
sweep filtering algorithms which move a line for finding a feasible position for the origin of
an object, this algorithm performs a recursive traversal of the multidimensional placement
space. It explores all points of the domain of the origin of the object under focus, one by
one, in increasing lexicographic order, until a point is found that is not infeasible for any
non-overlapping constraints. To make the search efficient, instead of moving each time
to the successor point, the search is arranged so that it skips points that are known to be
infeasible for some non-overlapping constraint.

See also visible, non overlap sboxes, diffn.

Key words constraint type: decomposition.
filtering: sweep.
geometry: geometrical constraint, non-overlapping.
puzzles: squared squares.
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Figure 4.192: Ten typical examples of use of the diffst constraint (ground instances)
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4.96 disjoint sboxes
DESCRIPTION LINKS

Origin Geometry, derived from [227]

Constraint disjoint sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) disjoint.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|

Purpose

Holds if, for each pair of objects (Oi, Oj), i $= j,Oi andOj are disjoint with respect to
a set of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a
set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin
of the shape) with given sizes. More precisely, a shifted box is an entity defined by its
shape id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted
boxes sharing the same shape id. An object is an entity defined by its unique object
identifier oid, shape id sid and origin x.
Two objects Oi and object Oj are disjoint with respect to a set of dimensions depicted
by DIMS if and only if for all shifted box si associated withOi and for all shifted box sj

associated withOj there exists at least one dimension d ∈ DIMS such that (1) the origin
of si in dimension d is strictly greater than the end of sj in dimension d, or (2) the
origin of sj in dimension d is strictly greater than the end of si in dimension d.



20070622 627

Example
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2, {0, 1},
*

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 4 x− 〈2, 4〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉
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Figure 4.198 shows the objects of the example. Since these objects are pairwise
disjoint the disjoint sboxes constraint holds.

S1

2

4

1 2 3 4 5

3
O1 O2

O3

(D) Three mutually disjoint objects

third object
(C) Shape of the

second object
(B) Shapes of the(A) Shape of the

first object

S3

S4

S2

1

Figure 4.198: The three mutually disjoint objects of the example

Remark One of the eight relations of the Region Connection Calculus [227].

See also contains sboxes, coveredby sboxes, covers sboxes, equal sboxes,
inside sboxes, meet sboxes, non overlap sboxes, overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, rcc8.
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4.143 inside sboxes
DESCRIPTION LINKS

Origin Geometry, derived from [227]

Constraint inside sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) inside.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|

Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi is inside Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object Oi is inside an object Oj with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted boxes si associated with Oi, there exists a shifted
box sj of Oj such that sj is inside si. A shifted box sj is inside a shifted box si if and
only if, for all dimensions d ∈ DIMS, (1) the start of sj in dimension d is strictly less
than the start of si in dimension d, and (2) the end of si in dimension d is strictly less
than the end of sj in dimension d.
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Example
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B

B

B

B

B

B

@

2, {0, 1},
*

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 3 x− 〈3, 3〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈5, 5〉

+

1

C

C

C

C

C

C

C

C

A

Figure 4.299 shows the objects of the example. Since O1 is inside O2 and O3, and
since O2 is also inside O3, the inside sboxes constraint holds.

(B) Shapes of the

S2

third object

S3

(A) Shape of the
first object

S1

(C) Shape of the

1

4

2

3

4

5

6

second object

521

is inside O2 and O3, and O2 is inside O3
(D) Three objects O1, O2 and O3, where O1

3

O3

O1

O2

Figure 4.299: The three objects of the example

Remark One of the eight relations of the Region Connection Calculus [227]. The constraint
inside sboxes is a restriction of the original relation since it requires that each box of
an object is contained by one box of the other object.

See also contains sboxes, coveredby sboxes, covers sboxes, disjoint sboxes,
equal sboxes, meet sboxes, non overlap sboxes, overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, rcc8.
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4.167 lex chain less
DESCRIPTION LINKS GRAPH

Origin [65]

Constraint lex chain less(VECTORS)

Usual name lex chain

Type(s) VECTOR : collection(var−dvar)

Argument(s) VECTORS : collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collec-
tion we have that VECTORi is lexicographically strictly less than VECTORi+1. Given
two vectors, !X and !Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, !X
is lexicographically strictly less than !Y if and only if X0 < Y0 or X0 = Y0 and
〈X1, . . . , Xn−1〉 is lexicographically strictly less than 〈Y1, . . . , Yn−1〉.

Example

0

@

*

vec− 〈5, 2, 3, 9〉 ,
vec− 〈5, 2, 6, 2〉 ,
vec− 〈5, 2, 6, 3〉

+

1

A

The lex chain less constraint holds since:

• The first vector 〈5, 2, 3, 9〉 of the VECTORS collection is lexicographically strictly less
than the second vector 〈5, 2, 6, 2〉 of the VECTORS collection.

• The second vector 〈5, 2, 6, 2〉 of the VECTORS collection is lexicographically strictly
less than the third vector 〈5, 2, 6, 3〉 of the VECTORS collection.

Usage This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows to come up with a complete pruning.

Algorithm A filtering algorithm achieving arc-consistency for a chain of lexicographical constraints is
presented in [65].

See also lex between, lex chain lesseq, lex less, lex lesseq, lex greater,
lex greatereq.

Key words characteristic of a constraint: vector.
constraint type: decomposition, order constraint.
filtering: arc-consistency.
symmetry: symmetry, matrix symmetry, lexicographic order.
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Arc input(s) VECTORS

Arc generator PATH $→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) lex less(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS|− 1

Graph model Parts (A) and (B) of Figure 4.335 respectively show the initial and final graph associated
with theExample slot. Since we use theNARC graph property, the arcs of the final graph
are stressed in bold. The lex chain less constraint holds since all the arc constraints of
the initial graph are satisfied.

VECTORS

1

2

3

NARC=2

1:5
  2
  3
  9

2:5
  2
  6
  2

3:5
  2
  6
  3

(A) (B)

Figure 4.335: Initial and final graph of the lex chain less constraint

Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS|− 1 toNARC ≥ |VECTORS|− 1 and simplifyNARC toNARC.
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4.185 meet sboxes

DESCRIPTION LINKS

Origin Geometry, derived from [227]

Constraint meet sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) meet.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
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Holds if, for each pair of objects (Oi, Oj), i $= j, Oi and Oj meet with respect to a set
of dimensions depicted by DIMS. Each shape is defined as a finite set of shifted boxes,
where each shifted box is described by a box in a K-dimensional space at a given offset
(from the origin of the shape) with given sizes. More precisely, a shifted box is an entity
defined by its shape id sid, shift offset t, and sizes l. Then, a shape is defined as the
union of shifted boxes sharing the same shape id. An object is an entity defined by its
unique object identifier oid, shape id sid and origin x.
Two objects Oi and object Oj meet with respect to a set of dimensions depicted by
DIMS if and only if the two following conditions hold:

Purpose • For all shifted box si associated withOi and for all shifted box sj associated with
Oj there exists a dimension d ∈ DIMS such that (1) the start of si in dimension
d is greater than or equal to the end of sj in dimension d, or (2) the start of sj in
dimension d is greater than or equal to the end of si in dimension d (i.e., there is
no overlap between the shifted box of Oi and the shifted box of Oj ).

• There exists a shifted box si of Oi and there exists a shifted box sj of Oj such
that for all dimensions d (1) the end of si in dimension d is greater than or equal
to the start of sj in dimension d, and (2) the end of sj in dimension d is greater
than or equal to the start of si in dimension d (i.e., at least two shifted box of Oi

and Oj are in contact).

Example

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1, {0, 1},
*

oid− 1 sid− 1 x− 〈3, 2〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 4 x− 〈3, 4〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

+

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 4.366 shows the objects of the example. Since all the pairs of objects meet
the meet sboxes constraint holds.

Remark One of the eight relations of the Region Connection Calculus [227].

See also contains sboxes, coveredby sboxes, covers sboxes, disjoint sboxes,
equal sboxes, inside sboxes, non overlap sboxes, overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, rcc8.
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3

O3

(D) Three objects for which each pair of objects meet

1

4 5

O2

S1
S2

S4

S3

first object
(A) Shape of the (B) Shapes of the

second object
(C) Shape of the

third object

1 2 3

2

O1
4

Figure 4.366: The three objects of the example
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4.204 non overlap sboxes
DESCRIPTION LINKS

Origin Geometry, derived from [25]

Constraint non overlap sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) non overlap, non overlapping.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|

Purpose

Holds if, for each pair of objects (Oi, Oj), i < j,Oi andOj do not overlap with respect
to a set of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among
a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin
of the shape) with given sizes. More precisely, a shifted box is an entity defined by its
shape id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted
boxes sharing the same shape id. An object is an entity defined by its unique object
identifier oid, shape id sid and origin x.
An objectOi does not overlap an objectOj with respect to a set of dimensions depicted
by DIMS if and only if, for all shifted box si associated with Oi and for all shifted box
sj associated with Oj , there exists a dimension d ∈ DIMS such that the start of si in
dimension d is greater than or equal to the end of sj in dimension d, or the start of sj in
dimension d is greater than or equal to the end of si in dimension d.
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Example

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1, {0, 1},
*

oid− 1 sid− 1 x− 〈4, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 4 x− 〈5, 4〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 1 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 1 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

+

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 4.399 shows the objects of the example. Since O1 and O2 do not overlap,
since O1 and O3 do not overlap, and since O2 and O3 also do not overlap, the
non overlap sboxes constraint holds.

4

3

2

third object
(C) Shape of the

S4

1

41 32

(A) Shape of the
first object second object

S2

O3

and O2 does not overlap O3
(D) Three objects for which where O1 does not overlap O2

S3

O2

S1

5

(B) Shapes of the

O1

Figure 4.399: The three objects of the example

See also diffst, contains sboxes, coveredby sboxes, covers sboxes, diffn,
disjoint sboxes, equal sboxes, inside sboxes, meet sboxes, overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, non-overlapping.
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4.226 overlap sboxes
DESCRIPTION LINKS

Origin Geometry, derived from [227]

Constraint overlap sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym(s) overlap.

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)

Argument(s) K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−int, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|

Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi overlaps Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object Oi overlaps an object Oj with respect to a set of dimensions depicted by
DIMS if and only if, there exists a shifted box si associated with Oi and there exists
a shifted box sj associated with Oj , such that (1) there exists a dimension d ∈ DIMS

where the end ofOi in dimension d is strictly greater than the start ofOj in dimension d,
and (2) the end of Oj in dimension d is strictly greater than the start of Oi in dimension
d.
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Example

0

B

B

B

B

B

B

B

B

@

2, {0, 1},
*

oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈3, 2〉 ,
oid− 3 sid− 3 x− 〈2, 4〉

+

,

*

sid− 1 t− 〈0, 0〉 l− 〈4, 5〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉

+

1

C

C

C

C

C

C

C

C

A

Figure 4.431 shows the objects of the example. Since O1 overlaps both O2 and
O3, and since O2 overlaps O3, the overlap sboxes constraint holds.

3

(C) Shape of the

6

5

2

4

1

1 2 5

overlaps both O2 and O3, and O2 overlaps O3
(D) Three objects O1, O2 and O3, where O1

3

4

S3

 first object  second object  third object

S1
S2

(A) Shape of the (B) Shapes of the

O3

O1

O2

Figure 4.431: The three objects of the example

Remark One of the eight relations of the Region Connection Calculus [227].

See also coveredby sboxes, covers sboxes, contains sboxes, disjoint sboxes,
equal sboxes, inside sboxes, meet sboxes, non overlap sboxes.

Key words constraint type: predefined constraint.
geometry: geometrical constraint, rcc8.
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4.232 place in pyramid
DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint place in pyramid(ORTHOTOPES, VERTICAL DIM)

Type(s) ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Argument(s) ORTHOTOPES : collection(orth− ORTHOTOPE)
VERTICAL DIM : int

Restriction(s) |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
VERTICAL DIM ≥ 1
diffn(ORTHOTOPES)

Purpose

For each pair of orthotopes (O1, O2) of the collection ORTHOTOPES, O1 and O2 do not
overlap (two orthotopes do not overlap if there exists at least one dimension where their
projections do not overlap). In addition, each orthotope of the collection ORTHOTOPES
should be supported by one other orthotope or by the ground. The vertical dimension is
given by the parameter VERTICAL DIM.

Example

0

B

B

B

B

B

B

@

*

orth− 〈ori− 1 siz− 3 end− 4, ori− 1 siz− 2 end− 3〉 ,
orth− 〈ori− 1 siz− 2 end− 3, ori− 3 siz− 3 end− 6〉 ,
orth− 〈ori− 5 siz− 6 end− 11, ori− 1 siz− 2 end− 3〉 ,
orth− 〈ori− 5 siz− 2 end− 7, ori− 3 siz− 2 end− 5〉 ,
orth− 〈ori− 8 siz− 3 end− 11, ori− 3 siz− 2 end− 5〉 ,
orth− 〈ori− 8 siz− 2 end− 10, ori− 5 siz− 2 end− 7〉

+

, 2

1

C

C

C

C

C

C

A

Figure 4.438 depicts the placement associated with the example, where the ith item
of the ORTHOTOPES collection is represented by the rectangle Ri. The place in pyramid

constraint holds since the rectangles do not overlap and since rectangles R1, R2, R3, R4,
R5, and R6 are respectively supported by the ground, R1, the ground, R3, R3, and R5.

Usage The diffn constraint is not enough if one wants to produce a placement where no orthotope
floats in the air. This constraint is usually handled with a heuristic during the enumeration
phase.

See also orth on top of orth, orth on the ground.

Key words geometry: geometrical constraint, non-overlapping, orthotope.
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1
987654321 10

6

5

4

3
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R2 R5
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R3

dim=1
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m
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Figure 4.438: Solution corresponding to the example
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Arc input(s) ORTHOTOPES

Arc generator CLIQUE &→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s)
W

0

B

B

@

V

„

orthotopes1.key = orthotopes2.key,
orth on the ground(orthotopes1.orth, VERTICAL DIM)

«

,

V

„

orthotopes1.key (= orthotopes2.key,
orth on top of orth(orthotopes1.orth, orthotopes2.orth, VERTICAL DIM)

«

1

C

C

A

Graph property(ies) NARC= |ORTHOTOPES|

Graph model The arc constraint of the graph constraint enforces one of the following conditions:

• If the arc connects the same orthotope O then the ground directly supports O,

• Otherwise, if we have an arc from an orthotope O1 to a distinct orthotope O2,
the condition is: O1 is on top of O2 (i.e., in all dimensions, except dimension
VERTICAL DIM, the projection of O1 is included in the projection of O2, while in
dimension VERTICAL DIM the projection ofO1 is located after the projection ofO2).

Parts (A) and (B) of Figure 4.439 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

ORTHOTOPES

1

2

3

4

5

6

NARC=6

1:1,3,4
  1,2,3

2:1,2,3
  3,3,6

3:5,6,11
  1,2,3

4:5,2,7
  3,2,5

5:8,3,11
  3,2,5

6:8,2,10
  5,2,7

(A) (B)

Figure 4.439: Initial and final graph of the place in pyramid constraint
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4.306 visible
DESCRIPTION LINKS

Origin Extension of accessibility parameter of diffn.

Constraint visible(K, DIMS, FROM, OBJECTS, SBOXES)

Type(s) VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
NATURALS : collection(v−int)
DIMDIR : collection(dim−int, dir−int)

Argument(s) K : int

DIMS : sint

FROM : DIMDIR

OBJECTS : collection

0

B

B

B

B

B

B

@

oid−int,
sid−dvar,
x− VARIABLES,
start−dvar,
duration−dvar,
end−dvar

1

C

C

C

C

C

C

A

SBOXES : collection(sid−int, t− INTEGERS, l− NATURALS, f− DIMDIR)

Restriction(s) required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(NATURALS, v)
|NATURALS| = K

NATURALS.v > 0
required(DIMDIR, [dim, dir])
|DIMDIR| > 0
|DIMDIR| ≤ K + K

distinct(DIMDIR, [])
DIMDIR.dim ≥ 0
DIMDIR.dim < K

DIMDIR.dir ≥ 0
DIMDIR.dir ≤ 1
K ≥ 0
DIMS ≥ 0
DIMS < K

required(OBJECTS, [oid, sid, x])
require at least(2, OBJECTS, [start, duration, end])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
OBJECTS.duration ≥ 0
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
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Holds if and only if:
Purpose 1. The difference between the end in time and the start in time of each object is

equal to its duration in time.

2. Given a collection of potential observations places FROM, where each observation
place is specified by a dimension (i.e., an integer between 0 and k − 1) and by
a direction (i.e., an integer between 0 and 1), and given for each shifted box
of SBOXES a set of visible faces, enforce that at least one visible face of each
shifted box associated with an object o ∈ OBJECTS should be entirely visible
from at least one observation place of FROM at time o.start as well as at time
o.end − 1 are transparent. This notion is defined in a more formal way in the
Remark slot.

Example

0

B

B

B

B

B

B

@

2, {0, 1},
〈dim− 0 dir− 1〉 ,
fi

oid− 1 sid− 1 x− 〈1, 2〉 start− 8 duration − 8 end− 16,
oid− 2 sid− 2 x− 〈4, 2〉 start− 1 duration − 15 end− 16

fl

,
fi

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

fl

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

2, {0, 1},
〈dim− 0 dir− 1〉 ,
fi

oid− 1 sid− 1 x− 〈1, 2〉 start− 1 duration − 8 end− 9,
oid− 2 sid− 2 x− 〈4, 2〉 start− 1 duration − 15 end− 16

fl

,
fi

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

fl

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

2, {0, 1},
〈dim− 0 dir− 1〉 ,
fi

oid− 1 sid− 1 x− 〈1, 1〉 start− 1 duration − 15 end− 16,
oid− 2 sid− 2 x− 〈2, 2〉 start− 6 duration − 6 end− 12

fl

,
fi

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

fl

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

2, {0, 1},
〈dim− 0 dir− 1〉 ,
fi

oid− 1 sid− 1 x− 〈4, 1〉 start− 1 duration − 8 end− 9,
oid− 2 sid− 2 x− 〈1, 2〉 start− 1 duration − 15 end− 16

fl

,
fi

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

fl

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

2, {0},
〈dim− 0 dir− 1〉 ,
fi

oid− 1 sid− 1 x− 〈2, 1〉 start− 1 duration − 8 end− 9,
oid− 2 sid− 2 x− 〈4, 3〉 start− 1 duration − 15 end− 16

fl

,
fi

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 f− 〈dim− 0 dir− 1〉

fl

1

C

C

C

C

C

C

A

The five previous examples correspond respectively to parts (I), (II), (III) and (IV)
of Figure 4.564 and to Figure 4.565. Before explaining these five examples Figure 4.563
first illustrates the notion of observations places and of visible faces.
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Figure 4.563: Entirely visible faces (depicted by a thick line) of rectangles 1, 2, 3, 4,
5, 6 and 7 from the four observation places 〈dim = 0, dir = 1〉, 〈dim = 0, dir = 0〉,
〈dim = 1, dir = 1〉 and 〈dim = 1, dir = 0〉 (depicted by an arrow)
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We first need to introduce a number of definitions in order to illustrate the notion of visibil-
ity.

Definition 1. Consider two distinct objects o and o′ of the visible constraint (i.e., o, o′ ∈
iobjects) as well as an observation place defined by the pair 〈dim, dir〉 ∈ FROM. The
object o is masked by the object o′ according to the observation place 〈dim, dir〉 if there
exist two shifted boxes s and s′ respectively associated with o and o′ such that conditionsA,
B, C, D and E all hold:

• (A) o.duration > 0∧ o′.duration > 0∧ o.end > o′.start∧ o′.end > o.start
(i.e., the time intervals associated with o and o′ intersect).

• (B) Discarding dimension dim, s and s′ intersect in all dimensions specified by DIMS
(i.e., objects o and o′ are in vis-à-vis).

• (C) If dir = 0

then o.x[dim] + s.t[dim] ≥ o′.x[dim] + s′.t[dim] + s′.l[dim]

else o′.x[dim] + s′.t[dim] ≥ o.x[dim] + s.t[dim] + s.l[dim] (i.e., in dimension dim,
o and o′ are ordered in the wrong way according to direction dir).

• (D) o.start > o′.start ∨ o.end < o′.end (i.e., instants o.start or o.end are
located within interval [o′.start, o′.end]; we consider also condition A.).

• (E) The observation place 〈dim, dir〉 occurs within the list of visible faces asso-
ciated with the face attribute f of the shifted box s (i.e., the pair 〈dim, dir〉 is a
potentially visible face of o).

Definition 2. Consider an object o of the collection OBJECTS as well as a possible ob-
servation place defined by the pair 〈dim, dir〉. The object o is masked according to the
observation place 〈dim, dir〉 if and only if at least one of the following conditions holds:

• No shifted box associated with o has the pair 〈dim, dir〉 as one of its potentially
visible face.

• The object o is masked according to the possible observation place 〈dim, dir〉 by
another object o′.

Figures 4.564 and 4.565 respectively illustrate Definition 1 in the context of an observation
place (depicted by a triangle) equal to the pair 〈dim = 0, dir = 1〉. Observe that, in the
context of Figure 4.565, as the DIMS parameter of the visible constraint only mentions
dimension 0 (and not dimension 1), one object may be masked by another object even if
the two objects do not intersect in any dimension: i.e., only their respective ordering in the
dimension dim = 0 as well as their positions in time matter.

Definition 3. Consider an object o of the collection OBJECTS as well as a possible ob-
servation place defined by the pair 〈dim, dir〉. The object o is masked according to the
observation place 〈dim, dir〉 if and only if at least one of the following conditions holds:

• No shifted box associated with o has the pair 〈dim, dir〉 as one of its potentially
visible face.

• The object o is masked according to the possible observation place 〈dim, dir〉 by
another object o′.

Definition 4. An object of the collection OBJECTS constraint is masked according to a set
of possible observation places FROM if it is masked according to each observation place of
FROM.
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condition

 oid−o’ sid−2 x−<2,2> start−6 duration−6 end−12>,
<oid−o  sid−1 x−<1,1> start−1 duration−15 end−16,

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,
  sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>> )

visible( 2, {0,1}, <dim−0 dir−1>,

visible( 2, {0,1}, <dim−0 dir−1>,

  sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>> )

<oid−o  sid−1 x−<1,2> start−8 duration−8 end−16,

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,
 oid−o’ sid−2 x−<4,2> start−1 duration−15 end−16>,

 oid−o’ sid−2 x−<1,2> start−1 duration−15 end−16>,
<oid−o  sid−1 x−<4,1> start−1 duration−8 end−9,

visible( 2, {0,1}, <dim−0 dir−1>,

  sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>> )
<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,

visible( 2, {0,1}, <dim−0 dir−1>,

<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,
 oid−o’ sid−2 x−<4,2> start−1 duration−15 end−16>,

<oid−o  sid−1 x−<1,2> start−1 duration−8 end−9,

  sid−2 t−<0,0> l−<2,3> f−<dim−0 dir−1>> )

the end in time of o is located before the end in time of o’,

<dim=0,dir=1> is a potentially visible face of o.(E)<dim=0,dir=1> is a potentially visible face of o.

the start in time of o is located after the start in time of o’,

(E)

(C)

(A)(A)
(B) (B)

(C)
(D)(D)

(II)(I)

time interval [8,16[time interval [1,8[ time interval [1,9[ time interval [9,16[

o and o’ intersect in dimension 1,

in dimension 0, o’ starts after the end of o,

o and o’ intersect in time,

o and o’ intersect in dimension 1,

in dimension 0, o’ starts after the end of o,

and even though o and o’ intersect in dimension 1, and even

though the end in time of o is located before the end in time of o’,

and even though <dim=0,dir=1> is a potentially visible face of o,(E)and even though <dim=0,dir=1> is a potentially visible face of o,(E)

(IV)(III)

time interval [1,6[ time interval [6,12[ time interval [12,16[ time interval [9,16[time interval [1,9[

condition does not hold.

(B)
(C)

does not hold.(D)

(B)
(D)

(C)

(A) (A)Even though o and o’ intersect in time,

and even though o and o’ intersect in dimension 1,

and even though, in dimension 0, o’ starts after the end of o,

Even though o and o’ intersect in time,

o and o’ intersect in time,

o is masked by o’ according to <dim=0,dir=1> since: o is masked by o’ according to <dim=0,dir=1> since:

o is not masked by o’ according to <dim=0,dir=1> since: o is not masked by o’ according to <dim=0,dir=1> since:
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Figure 4.564: Illustration of Definition 1: (I,II) the case where an object o is masked
by an object o′ according to dimensions {0, 1} and to the observation place 〈dim =
0, dir = 1〉 because (A) o and o′ intersect in time, (B) o and o′ intersect in dimension
1, (C) o and o′ are not well ordered according to the observation place, (D) there exists
an instant where o′ if present (but not o) and (E) 〈dim = 0, dir = 1〉 is a potentially
visible face of o; (III,IV) the case where an object o is not masked by an object o′

according to the observation place 〈dim = 0, dir = 1〉.
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<oid−o  sid−1 x−<2,1> start−1 duration−8 end−9,

  sid−2 t−<0,0> l−<2,2> f−<dim−0 dir−1>> )
<sid−1 t−<0,0> l−<1,2> f−<dim−0 dir−1>,

o is masked by o’ according to <dim=0,dir=1> since:

(A)

(D)
(C)

time interval [9,16[time interval [1,9[

o and o’ intersect in time,

in dimension 0, o’ starts after the end of o,

(E)
the end in time of o is located before the end in time of o’,

<dim=0,dir=1> is a potentially visible face of o.

visible(2, {0}, <dim−0 dir−1>,

  oid−o’ sid−2 x−<4,3> start−1 duration−15 end−16>,

o

o’ o’ dir=1
dim=0,

dir=1
dim=0,

98
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d=
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time
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je
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s
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4 4
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654321 d=0

d=
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Figure 4.565: Illustration of Definition 1: the case where an object o is masked by an
object o′ according to dimension 0 and to the observation place 〈dim = 0, dir = 1〉
because: (A) o and o′ intersect in time, (C) o and o′ are not well ordered according to
the observation place and (D) there exists an instant where o′ if present (but not o) and
(E) 〈dim = 0, dir = 1〉 is a potentially visible face of o.
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We are now in position to define the visible constraint.

Definition 5. Given a visible(K, DIMS, FROM, OBJECTS, SBOXES) constraint, the
visible constraint holds if none of the objects of OBJECTS is masked according to the
dimensions of DIMS and to the set of possible observation places defined by FROM.
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Usage We now give several typical concrete uses of the visible constraint, which all mention
the diffst as well as the visible constraints:

• Figure 4.566 corresponds to a ship loading problemwhere containers are piled within
a ship by a crane each time the ship visits a given harbour. In this context we have first
to express the fact that a container can only be placed on top of an already placed
container and second, that a container can only be taken away if no container is
placed on top of it. These two conditions are expressed by one single visible

constraint for which the DIMS parameter mentions all three dimensions of the place-
ment space and the FROM parameter mentions the pair 〈dim = 2, dir = 1〉 as its
unique observation place. In addition we also use a diffst constraint for expressing
non-overlapping.

     oid−6 sid−1 x−<1,1,1> start−17 duration−7   end−24>

visible(3, {0,1,2}, <dim−2 dir−1>,

    <sid−1 t−<0,0,0> l−<2,4,2> f−<dim−2 dir−1>> )

    <oid−1 sid−1 x−<1,1,1> start−0   duration−17 end−17,

     oid−3 sid−1 x−<4,1,1> start−0   duration−8   end−8  ,
     oid−4 sid−1 x−<1,1,3> start−8   duration−9   end−17,
     oid−5 sid−1 x−<4,1,1> start−8   duration−16 end−24,

     oid−2 sid−1 x−<1,1,3> start−0   duration−8   end−8  ,

2
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3
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Figure 4.566: Illustration of the ship loading problem

• Figure 4.567 corresponds to a container loading/unloading problem in the context
of a pick-up delivery problem where the loading/unloading takes place with respect
to the front door of the container. Beside the diffst constraint used for expressing
non-overlapping, we use two distinct visible constraints:
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– The first visible constraint takes care of the location of the front door of the
container (each object o has to be loaded/unloaded without moving around any
other object, i.e., objects that are in the vis-à-vis of o according to the front
door of the container). This is expressed by one single visible constraint for
which the DIMS parameter mentions all three dimensions of the placement space
and the FROM parameter mentions the pair 〈dim = 1, dir = 0〉 as its unique
observation place.

– The second visible constraint takes care of the gravity dimension (i.e., each
object that has to be loaded should not be put under another object, and recip-
rocally each object that has to be unloaded should not be located under another
object). This is expressed by the same visible constraint that was used for the
ship loading problem, i.e., a visible constraint for which the DIMS parameter
mentions all three dimensions of the placement space and the FROM parameter
mentions the pair 〈dim = 2, dir = 1〉 as its unique observation place.

• Figure 4.568 corresponds to a pallet loading problem where one has to place six
objects on a pallet. Each object corresponds to a parallelepiped that has a bar code
on one of its four sides (i.e., the sides that are different from the top and the bottom
of the parallelepiped). If, for some reason, an object has no bar code then we simply
remove it from the objects that will be passed to the visible constraint: this is for
instance the case of the sixth object. In this context the constraint to enforce (beside
the non-overlapping constraint between the parallelepipeds that are assigned to a
same pallet) is the fact that the bar code of each object should be visible (i.e., visible
from one of the four sides of the pallet). This is expressed by the visible constraint
given in Part (F) of Figure 4.568.

Remark The visible constraint is a generalisation of the accessibility constraint initially in-
troduced in the context of the diffn constraint.

See also diffst, diffn, non overlap sboxes.

Key words constraint type: decomposition.
filtering: sweep.
geometry: geometrical constraint.
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    <sid−1 t−<0,0,0> l−<2,1,1> f−<dim−1 dir−0, dim−2 dir−1>,
      sid−2 t−<0,0,0> l−<2,2,2> f−<dim−1 dir−0, dim−2 dir−1>,
      sid−3 t−<0,0,0> l−<2,4,2> f−<dim−1 dir−0, dim−2 dir−1>,

      sid−5 t−<0,0,0> l−<2,3,1> f−<dim−1 dir−0, dim−2 dir−1>,
      sid−4 t−<0,0,0> l−<2,4,1> f−<dim−1 dir−0, dim−2 dir−1>,

visible(3, {0,1,2}, <dim−1 dir−0>,

     oid−6 sid−6 x−<3,1,1> start−8   duration−12 end−24,

     oid−4 sid−4 x−<4,1,1> start−0   duration−17 end−17,
     oid−3 sid−3 x−<1,1,1> start−0   duration−17 end−17,

     oid−7 sid−3 x−<1,1,1> start−17 duration−7   end−24>,

     oid−5 sid−5 x−<1,2,3> start−8   duration−9   end−17,

     oid−2 sid−2 x−<1,3,3> start−0   duration−8   end−8,
    <oid−1 sid−1 x−<1,2,3> start−0   duration−8   end−8,

      sid−6 t−<0,0,0> l−<1,2,2> f−<dim−1 dir−0, dim−2 dir−1>> )

visible(3, {0,1,2}, <dim−2 dir−1>,

      sid−6 t−<0,0,0> l−<1,2,2> f−<dim−1 dir−0, dim−2 dir−1>> )

    <oid−1 sid−1 x−<1,2,3> start−0   duration−8   end−8,
     oid−2 sid−2 x−<1,3,3> start−0   duration−8   end−8,

     oid−5 sid−5 x−<1,2,3> start−8   duration−9   end−17,

     oid−7 sid−3 x−<1,1,1> start−17 duration−7   end−24>,

     oid−3 sid−3 x−<1,1,1> start−0   duration−17 end−17,
     oid−4 sid−4 x−<4,1,1> start−0   duration−17 end−17,

     oid−6 sid−6 x−<3,1,1> start−8   duration−12 end−24,

      sid−4 t−<0,0,0> l−<2,4,1> f−<dim−1 dir−0, dim−2 dir−1>,
      sid−5 t−<0,0,0> l−<2,3,1> f−<dim−1 dir−0, dim−2 dir−1>,

      sid−3 t−<0,0,0> l−<2,4,2> f−<dim−1 dir−0, dim−2 dir−1>,
      sid−2 t−<0,0,0> l−<2,2,2> f−<dim−1 dir−0, dim−2 dir−1>,
    <sid−1 t−<0,0,0> l−<2,1,1> f−<dim−1 dir−0, dim−2 dir−1>,
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Figure 4.567: Illustration of the pick-up delivery problem
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Figure 4.568: Illustration of the pallet loading problem



A Generic Geometrical Constraint Kernel in Space and
Time for Handling Polymorphic k-Dimensional Objects

N. Beldiceanu1, M. Carlsson2, E. Poder1, R. Sadek1, and C. Truchet3
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Abstract. This paper introduces a geometrical constraint kernel for handling the
location in space and time of polymorphick-dimensional objects subject to vari-
ous geometrical and time constraints. The constraint kernel is generic in the sense
that one of its parameters is a set of constraints on subsets of the objects. These
constraints are handled globally by the kernel.
We first illustrate how to model several placement problems with the constraint
kernel. We then explain how new constraints can be introduced and plugged into
the kernel. Based on these interfaces, we develop a generick-dimensional lexi-
cographic sweep algorithm for filtering the attributes of anobject (i.e., its shape
and the coordinates of its origin as well as its start, duration and end in time)
according to all constraints where the object occurs. Experiments involving up to
hundreds of thousands of objects and1 million integer variables are provided in
2, 3 and4 dimensions, both for simple shapes (i.e., rectangles, parallelepipeds)
and for more complex shapes.

1 Introduction and Presentation of the Kernel

This paper introduces a constraint kernelgeost(k,O,S, C) for handling in a generic
way a variety of geometrical constraintsC in space and time between polymorphic
k-dimensional objectsO (k ∈ N

+), where each object takes a shape among a set of
shapes described byS during a given time interval and at a given position in space.
This line of research can be seen as a continuation and generalisation of previous work
on non-overlapping parallelepipeds [1–4].

Each shape is defined as a finite set of shifted boxes, where each shifted box is
described by a box in ak-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, ashifted boxs = sbox(sid , t[], l[]) ∈ S is
an entity defined by its shape ids.sid , shift offsets.t[d], 0 ≤ d < k, and sizess.l[d]
(s.l[d] > 0, 0 ≤ d < k). All attributes of a shifted box are integer values. Then, ashape
is defined as the union of shifted boxes sharing the same shapeid. Eachobjecto =
object(id , sid , x[], start , duration, end) ∈ O is an entity defined by its unique object
id o.id , shape ido.sid , origin o.x[d], 0 ≤ d < k, start in timeo.start , duration in time



o.duration (o.duration ≥ 0) and end in timeo.end .1 All these attributes correspond
to domain variables.2 Typical constraints from the list of constraintsC can express, for
instance, the fact that a given subset of objects fromO do not pairwise overlap or that
they are all included within a given bounding box. Constraints always have two first
argumentsAi andOi (followed by possibly some additional arguments) which resp.
specify:

– A list of distinct dimensions (integers in[0, k − 1]) that the constraint considers.
– A list of identifiers of the objects to which the constraint applies.

Example 1.Assume we have a 3D placement problem (i.e.,k = 3) involving a set of paral-
lelepipedsP and one subsetP ′ ofP , where we want to express the fact that (1) no parallelepipeds
of P should overlap, and (2) no parallelepipeds ofP ′ should be piled. Constraints (1) and (2)
resp. correspond tonon-overlapping([0, 1, 2],P) and tonon-overlapping([0, 1],P ′). Within the
first non-overlappingconstraint, the argument[0, 1, 2] expresses the fact that we consider a
non-overlapping constraint according to dimensions0, 1 and 2 (i.e., given any pair of paral-
lelepipedsp′ andp′′ of P there should exist at least one dimensiond (d ∈ {0, 1, 2}) where
the projections ofp′ andp′′ on d do not overlap). Similarly, the argument[0, 1] of the second
non-overlapping constraint expresses the fact that, givenany pair of parallelepipedsp′ andp′′ of
P ′, there should exist at least one dimensiond (d ∈ {0, 1}) wherep′ andp′′ do not overlap).

geost(k,O,S, C) is defined in the following way: given a constraintctr i(Ai,Oi)
from the list of constraintsC between a subset of objectsOi ⊆ O according to the
attributesAi, letMCi denote the sets of cliques stemming from the objects ofOi that
all overlap in time.3 The constraints ofgeost(k,O,S, C) hold if and only if∀ctr i ∈ C,
∀OMCi

∈MCi : ctr i(Ai,OMCi
) holds.

Example 2.Fig. 1 presents a typical example of a dynamic 2D placement problem where one
has to place four objects, in time and within a given box, so that objects that overlap in time do
not overlap. Parts (A), (B), (C) and (D) resp. represent the potential shapes associated with the
four objects to place, where the origin of each object is represented by a black square�. Part (E)
shows the position of the four objects of the example as the time varies, where the first, second,
third and fourth objects were resp. assigned shapesS1, S5, S8 andS9:

– During the first time interval[2, 9] we have only objectO1 at position(1, 2).
– Then, at instant10 objectsO2 andO3 both appear. Their origins are resp. placed at positions

(2, 1) and(4, 1).
– At instant14 objectO1 disappears and is replaced by objectO4. The origin ofO4 is fixed at

position(1, 1). Finally, at instant22 all three objectsO2, O3 andO4 disappear.

The corresponding arguments are:

1 The time dimension is treated specially since theduration attribute may not be fixed, which
is not the case for the sizes of a shifted box. Also, the geometrical constraints only apply on
objects that intersect in time.

2 A domain variablev is a variable ranging over a finite set of integers denoted bydom(v); let
v andv resp. denote the minimum and maximum possible values forv.

3 In fact, these cliques (of an interval graph) are only used for defining the declarative semantics
of geost ’s constraints.
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Fig. 1.Example with4 objects,9 shapes, onenon-overlappingand oneincluded constraints

01 geost(2,
02 [object(1,1,[1,2], 2,12,14), object(2,5,[2,1],10,12,22),
03 object(3,8,[4,1],10,12,22), object(4,9,[1,1],14, 8,22)],
04 [sbox(1,[0,0],[2,1]), sbox(1,[0,1],[1,2]), sbox(1,[1,2],[3,1]),
05 sbox(2,[0,0],[3,1]), sbox(2,[0,1],[1,3]), sbox(2,[2,1],[1,1]),
06 sbox(3,[0,0],[2,1]), sbox(3,[1,1],[1,2]), sbox(3,[2,2],[3,1]),
07 sbox(4,[0,0],[3,1]), sbox(4,[0,1],[1,1]), sbox(4,[2,1],[1,3]),
08 sbox(5,[0,0],[2,1]), sbox(5,[1,1],[1,1]), sbox(5,[0,2],[2,1]),
09 sbox(6,[0,0],[3,1]), sbox(6,[0,1],[1,1]), sbox(6,[2,1],[1,1]),
10 sbox(7,[0,0],[3,2]), sbox(8,[0,0],[2,3]), sbox(9,[0,0],[1,4])],
11 [non-overlapping([0,1],[1,2,3,4]),included([0,1],[1,2,3,4],[1,1],[5,4])])

Its first argument2 is the number of dimensions of the placement space we consider. Its second
and third arguments resp. describe the four objects and the shifted boxes of the nine shapes
we have. For instance, the3 boxes of shapeS1 (depicted by3 thick rectangles in Part (A) of
Fig. 1) respectively correspond to the3 boxes declared at line 04 of the example. Finally, its last
argument gives the list of geometrical constraints imposedby geost : the first constraint expresses
a non-overlapping constraint between the four objects, while the second constraint imposes the
four objects to be located within the box containing all points (x, y) such that1 ≤ x ≤ 1+5−1

and1 ≤ y ≤ 1+4−1. The constraints ofgeost hold since the four objects do not simultaneously
overlap in time and in space and since they are completely included within the previous box (i.e.,
see Part (E) of Fig. 1).

Within the scope ofgeost(k,O,S, C), this paper presents a filtering algorithm that
prunes the domain of each attribute of every objecto = object(id , sid , x[], start ,
duration , end) ∈ O. All values found infeasible are deleted from the shape attribute
sid ; for the other attributes (i.e., the originx[], the start, the duration and the end), the
minimum and maximum are adjusted.

3



The paper is organised as follows. Section 2 provides an overview of placement
problems that can be modelled with the constraints currently available ingeost . Sec-
tion 3 presents the overall architecture of the geometricalkernel. It explains how to
define geometrical constraints in terms of a programming interface by the geometrical
kernel. Section 4 focusses on the main contribution of this paper: a multi-dimensional
lexicographic sweep algorithm used for filtering the attributes of an object ofgeost .
Section 5 evaluates the scalability of thegeost kernel as well as its ability to deal with a
variety of specific placement problems. Before we conclude,Section 6 comparesgeost
with related work and suggests future directions.

2 Modelling Problems with geost

As illustrated by Fig. 2 in the context ofnon-overlapping, geost allows to model directly
a large number of placement problems:

– Case (A) corresponds to a non-overlapping constraint amongthree segments.
– The second and third cases (B,C) correspond to a non-overlapping constraint be-

tween rectangles where (B) is a special case where the sizes of all rectangles in the
second dimension are equal to1; this can be interpreted as amachine assignment
problem.

– Case (D) corresponds to a non-overlapping constraint between rectangles where
each rectangle can have two orientations. This is achieved by associating with each
rectangle two shapes of respective sizesl×h andh×l. Since their orientation is not
initially fixed, theincluded constraint enforces the three rectangles to be included
within the bounding box defined by the origin’s coordinates1, 1 and sizes8, 3.

– Case (E) corresponds to a non-overlapping constraint between more complex ob-
jects where each object is described by a given set of rectangles.

– Case (F) describes a placement problem where one has to first assign each rectangle
to a strip so that all rectangles that are assigned to the samestrip do not overlap.

– Case (G) corresponds to a non-overlapping constraint between parallelepipeds.
– Case (H) can be interpreted as a non-overlappingconstraintbetween parallelepipeds

that are assigned to the same container. The first dimension corresponds to the
identifier of the container, while the next three dimensionsare associated with the
position of a parallelepiped inside a container.

– Case (I) describes a rectangle placement problem over threeconsecutive time-slots:
rectangles assigned to the same time-slot should not overlap in time. We initially
start with the three rectangles1, 2 and3. Rectangle3 is no longer present at instant2
(the triangleH within rectangle3 at time1 indicates that rectangle3 will disappear
at the next time-point), while rectangle4 appears at instant2 (the triangleN within
rectangle4 at time 2 denotes the fact that the rectangle4 appears at instant2).
Finally, rectangle2 disappears at instant3 and is replaced by rectangle5.

3 Standard Representation of Geometrical Constraints

The key idea for handling multiple geometrical constraintsin a common kernel is
the following. For each type of geometrical constraint found in C (also calledexter-
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Fig. 2.Nine typical examples of use ofgeost

nal constraints), one has to provide a service that computes necessary conditions (also
calledinternalconstraints) for a given object and shape. Given an externalgeometrical
constraintectr i(Ai,Oi) (Ai ⊆ {0, 1, . . . , k − 1},Oi ⊆ O), one of its objecto ∈ Oi

and one potential shapes of o, such a necessary condition generated byectr i, o ands is
a unary4 constraintictr(o.x) such that:o.sid = s ∧ ectr i(Ai,Oi) ⇒ ictr (o.x). Now,
the key to being able to globally treat such necessary conditions in the kernel is to give
them a uniform representation. We have chosen the followingone:

– A constraintoutbox(t, l) on o.x holds iff o.x is located outside the shifted box
defined by its origins pointt[d], 0 ≤ d < k, and sizesl[d], 0 ≤ d < k (i.e.,
∃d ∈ [0, k − 1] | o.x[d] < t[d] ∨ o.x[d] > t[d] + l[d]− 1).

Thus, an outbox corresponds to a box-shaped set of points that are infeasible for
o.x. The purpose of the introduction of outboxes is to have a common representation
for the kernel, suitable for thek-dimensional lexicographic sweep algorithm presented
in the next section, which considers all the outboxes, for a selected object and shape, in
one run.

Consequently, for each type of external geometrical constraint, found inC a service
GenOutboxes(ectr i, o, s) : (ictrs), responsible for generating outboxes, must be pro-
vided. This service is assumed to generate outboxes that intersect the domains of the
origin coordinates ofo. Also, if all attributes mentioned byectr i belonging to objects
other thano are fixed, those outboxes are assumed to be necessary and sufficient condi-
tions, lest the kernel accept false solutions.

Example of External Geometrical Constraints.We now illustrate some external geo-
metrical constraints that are currently available within the constraint kernel. As we saw
in the introduction, an external constraint always has at least two arguments that resp.

4 Unary, since it involves thek coordinates of asingleobject.
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correspond to a list of distinct dimensions and to a list of object identifiers to which the
constraint apply.

The included and non-overlappingexternal constraints. The included(Ai,Oi, t, l)
and thenon-overlapping(Ai,Oi) external constraints take as input a list of distinct
dimensionsAi in {0, 1, . . . , k − 1} and a listOi of distinct object identifiers ofgeost .
In addition, theincluded constraint considers a shifted box defined by its origin point
t[d], 0 ≤ d < k, and sizel[d], 0 ≤ d < k.

The included constraint enforces for each objecto (with o.id ∈ Oi) and for any
corresponding shifted boxs (with o.sid = s.sid ) the condition∀d ∈ Ai | t[d] ≤
o.x[d] + s.t[d] ∧ o.x[d] + s.t[d] + s.l[d]− 1 ≤ t[d] + l[d]− 1 (i.e.,s is included within
the shifted box attribute defined by the parameterst andl of the included constraint).
Depending on which shape of an object we actually consider, the included constraint
can be translated to2k outbox constraints.

Thenon-overlappingconstraint enforces the following condition: given two distinct
objectso ando′ (with o.id , o′.id ∈ Oi) that overlap in time, no shifted boxs (with
o.sid = s.sid ) should overlap any shifted boxs′ (with o′.sid = s′.sid ); i.e. it should
hold that∃d ∈ Ai | o.x[d] + s.t[d] + s.l[d] ≤ o′.x[d] + s′.t[d] ∨ o′.x[d] + s′.t[d] +
s′.l[d] ≤ o.x[d] + s.t[d] (i.e., there exists a dimension where they do not intersect).
While focussing on an objecto we can easily generate anoutbox constraint for each
objecto′ that should not overlapo by reusing the results of [2].

4 The Geometrical Kernel: a Generick-dimensional
Lexicographic Sweep Algorithm

In this section, we first present the sweep algorithm used forfiltering the coordinates of
the origin of an objecto of geost when each object has one single shape. We initially
assume that time is treated exactly like the space dimensions, i.e. that theo.x array is
extended by one element. Toward the end of this section, we explain in detail how to
treat the time attributes of an object. We also assume for nowthat the shape attribute is
fixed, and explain later how to handle multiple potential shapes for an object (i.e., poly-
morphism). We now introduce some notation used throughout this section.

Notation. Assumev and w are vectors of scalars ofk components. Thenv ← w

denotes the element-wise assignment ofw to v, w + d (resp.w − d) denotes the ele-
ment-wise addition ofd (resp.−d) to w. Given a scalard, 0 ≤ d ≤ k − 1, rot(v, d, k)
denotes the vector(v[d], v[(d+1) mod k], . . . , v[(d− 1) mod k]). That is, in the ro-
tated vector,v[d] is the most significant element, which is what we need when running
the sweep algorithm on dimensiond.

The Sweep Algorithm. This algorithm first considers all outboxesICo derived from
C where objecto actually appears, and then performs a recursive traversal of the place-
ment space for each coordinate and direction (i.e.,min or max). Without loss of gen-
erality, assume we want to adjust the minimum value of thedth coordinateo.x[d],
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0 ≤ d < k, of the origin ofo. The algorithm starts its recursive traversal of the place-
ment space at pointc = rot(o.x, d, k) and could in principle explore all points of the
domains ofo.x, one by one, in increasing lexicographic order, until a point is found
that is not inside any outbox, in which casec[0] is the computed new minimum value.
To make the search efficient, instead of moving each time to the successor point, we
arrange the search so that it skips points that are known to beinside some outbox.5

Thus, we compute the lexicographically smallest pointc′ such that:

1. c′ is lexicographically greater than or equal toc,
2. every element ofc′ is in the domain of the corresponding element ofo.x,
3. c′ is not inside any outbox ofICo.

If no suchc′ exists, the constraint fails. Otherwise, the minimum valueof o.x[d] is
adjusted toc′[0]. As we saw, the sweep algorithm moves in increasing lexicographic or-
der a pointc from its lexicographically smallest potential feasible position to its lexico-
graphically largest potential feasible position through all potential points. The algorithm
uses the following data structures:

– The current positionc of the sweep.
– A vector n[0..k − 1] that records knowledge about already encountered sets of

infeasible points while movingc from its first potential feasible position. The vector
n is always element-wise greater thanc and maintained as follows. Letinf, sup
denote the vectorsinf = rot(o.x, d, k) andsup = rot(o.x + 1, d, k):
• Initially, n = sup.
• Whenever an outboxf containingc is found,n is updated by taking the ele-

ment-wise minimal value ofn and the upper boundary ofrot(f, d, k), indicat-
ing the fact that new candidate points can be found beyond that value.
• Whenever we skip to the next candidate point, we reset the elements ofn that

were used to the corresponding values ofsup.
The following invariant holds for the vectorn, and is used when advancingc to the
next candidate point. Leti be the smallestj such thatn[j +1] = sup[j +1]∧ · · · ∧
n[k − 1] = sup[k − 1] and supposec is known to be in some outbox. Then, the
next point, lexicographically greater thanc and not yet known to be in any outbox,
is (c[0], . . . , c[i− 1], n[i], inf[i + 1], . . . , inf[k − 1]).

Algorithm 1 implement this idea. The algorithm prunes the bounds of each coordi-
nate of every object wrt. its relevant outboxes, iterating to fix-point.

Efficiency. The main inefficiency in this sweep algorithm lies in searching the set
of outboxes (line 4 ofPruneMin). In order to make this search more efficient, we
can make the sweep algorithm more sophisticated by the following modifications to
PruneMin:

– We extend the state of the algorithm by anevent point series, ordered in lexi-
cographically increasing order. These events correspond to the lexicographically
smallest (insert events) and largest (delete events) relevant infeasible point associ-
ated with each outboxictr o ∈ ICo. They are sorted in lexicographically increasing
order, and we maintain a pointer into the series in sync with point c.

5 Potential holes in the domains are reflected in outboxes.
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PROCEDURE FilterCtrs(k,O,S ,C) : bool
1: nonfix ← true // fixpoint not yet reached
2: while nonfix do
3: nonfix ← false // assumes no filtering will be done
4: for all o ∈ O do
5: I ←

S

e∈C
GenOutboxes(e, o, o.sid) // build the set of outboxes ono

6: I ← I ∪
S

0≤d<k
possible outboxes corresponding to holes ino.x[d]

7: for d← 0 to k − 1 do
8: if ¬PruneMin(o, d, k, I) ∨ ¬PruneMax(o, d, k, I) then
9: return false // no feasible origin

10: else ifo.x was prunedthen
11: nonfix ← true // fixpoint not yet reached
12: end if
13: end for
14: end for
15: end while
16: return true // feasible origin

PROCEDURE PruneMin(o, d, k, I) : bool
1: b← true // b = true while we have not failed
2: c← o.x // initial position of the point
3: n← o.x + 1 // upper limits+1 in the different dimensions
4: while b ∧ ∃f ∈ I | c ∈ f do
5: n← min(n, f.t + f.l) // update vectorn according to an outboxf containingc
6: b← false // no new point to jump to yet
7: for j ← k − 1 downto 0 do
8: j′ ← (j + d) mod k // rotation wrt.d, k

9: c[j′]← n[j′] // use vectorn to jump
10: n[j′]← o.x[j′] + 1 // reset component ofn to maximum value
11: if c[j′] ≤ o.x[j′] then
12: b← true // jump target found
13: j ← 0 // exit for loop
14: else
15: c[j′]← o.x[j′] // reset component ofc, for exhausted a dimension
16: end if
17: end for
18: end while
19: if b then
20: o.x[d]← max(o.x[d], c[d])
21: end if
22: return b

Algorithm 1: FilterCtrs is the main filtering algorithm associated with
geost(k,O,S, C), where k, O, S and C resp. correspond to the number of di-
mensions, to the objects, to the shapes and to the external geometrical constraints.
PruneMin adjusts the lower bound of thedth coordinate of the origin of objecto
whereI is the set of outboxes associated with objecto (sincePruneMax is similar
to PruneMin it is omitted). The given fixpoint loop is an over-simplification. The
implementation maintains a set of objects that need filtering. Whenever an objecto is
pruned, all non-fixed objects connected too by an external constraint are added to this
set. When the set becomes empty, the fixpoint is reached.
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– We maintain the set ofactive outboxes, corresponding to all outboxesictr o ∈ ICo

such thatc is between its lexicographically smallest and largest infeasible points.
This set is initially empty.

– Whenc is initialized in line 2 as well as whenc is incremented in lines 7-17, the
relevant events up to pointc from the event point series are processed, and the
corresponding outboxes are added to or deleted from the set of active outboxes.

– In line 4, only the active outboxes are considered.

Example 3.Fig. 3 illustrates thek-dimensional lexicographic sweep algorithm in the contextof
k = 2. Parts (A) and (B) provide the variables of the problem (i.e., the abscissa and ordinate
of each rectangler1, r2, r3, r4 andr5) as well as the non-overlapping constraint between the
five previous rectangles. On Part (D) we have represented theextreme possible feasible positions
of each rectangle (i.e., rectanglesr1 to r4): for instance the leftmost lower corner of rectangle
r1 can only be fixed at positions(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4),
(4, 2), (4, 3) and(4, 4). Parts (C) to (L) of Fig. 3 detail the different steps of the algorithm for
adjusting the minimum value of the abscissa of rectangler5. Part (C) provides the outboxes
associated with the fact that we want to prune the coordinates of r5: constraintsctr 1, ctr2, ctr3

andctr4 resp. correspond to the fact that rectangler5 should not overlap rectanglesr1, r2, r3

andr4, while constraintctr5 represents the fact that the ordinate ofr5 should be different from
7. Part (D) represents the initialisation phase of the algorithm where we have all five outboxes
with their respective lexicographically smallest infeasible point (i.e.,(1, 1) for ctr1, (1, 3) for
ctr2, (1, 7) for ctr5, (1, 8) for ctr 3 and(3, 1) for ctr4). Part (E) represents the first step of the
sweep algorithm where we start the traversal of the placement space at pointc = (1, 1). We first
transfer to the list of active outboxes all outboxes for which the first lexicographically smallest
infeasible point is lexicographically greater than or equal to the current position of the sweep
c = (1, 1) (i.e., constraintctr1 = outbox([1, 1], [2, 2])). We then search through the list of
active constraints (represented on the figure by a box with the legend ACTRS on top of it) the
first constraint for whichc = (1, 1) is infeasible. In fact, sincectr1 is infeasible (represented on
the figure by a box with the legend CONFLICT on top of it) we compute the vectorf = (3, 3)
that tells how to get the next potentially feasible point in the different dimensions. Consequently
the sweep moves to the next position(1, 3) (see Part (F)) and the process is repeated until we
finally find a feasible point for all outboxes (i.e., point(3, 8) in Part (L)). Note that, when the
lexicographically largest infeasible point associated with an active outbox is lexicographically
less than the current position of the sweep, we remove that constraint from the list of active
outboxes. This is for instance the case in Part (I), where we remove constraintctr 3 from the list
of active outboxes (since its lexicographically largest infeasible point(2, 8) is lexicographically
less than the position of the sweepc = (3, 1)).

Complexity. Rather than analysing the complexity of thegeost kernel for a fixedk,
which depends both on the type of each external constraint (i.e., the complexity of a
given external constraint for generating all its corresponding outboxes as well as their
number), we rather focus onPruneMin for adjusting the minimum value of thedth

coordinate of the origin of an object. Assuming that the maximum number of outboxes
is equal ton we give an upper bound on the maximum number of jumps ofPruneMin
(i.e., the maximum number of times the sweep is moved).

First note that we always jump to an upper border (+1) of an outbox (i.e., see line 5
of PruneMin) or that we reset some coordinates of the sweep to its minimumvalue (i.e.,
see line 15 ofPruneMin). Consequently, all coordinates of the sweep are always equal
to an upper border (+1) of some outboxes or to a minimum possible value. Since we
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want to evaluate the maximum number of jumps, let us assume that for every dimension
d (0 ≤ d < k) the upper limits of all then outboxes are distinct. Having this in
mind we can construct a maximum of(n + 1)k points. Even if we found a systematic
construction where this number of jumps is reached, the performance evaluation of
Section 5 indicates that we can handle a reasonable number ofobjects fork = 2, 3, 4.

From a memory consumption point of view, the algorithm only records the coor-
dinates of the sweep from one invocation to the next, in ordernot to restart the search
from scratch (i.e.,2k points for each object).

Handling Time. Given an objecto ∈ O of geost , the sweep algorithm that we have
introduced in the previous section can be easily adapted to handle the start in time
o.start , duration in timeo.duration and end in timeo.end . Beside maintaining bound
consistency for the constrainto.end = o.start + o.duration , we add an extratime
dimension to the geometric coordinates of objecto. Roughly, this new time coordinate
corresponds too.start resp.o.end depending on whether we are adjusting the minimum
or maximum.

Handling Polymorphism. In order to handle the fact that objects can have several
potential shapes we modify the previous algorithm in the following way. For adjusting
the minimum value of the coordinate of the origin of an objectthat has more than one
shape we call the sweep algorithm for each potential shape ofthe object (i.e., for each
value of its shape variable). Then we take the smallest minimum value obtained (i.e.,
we use constructive disjunction) and prune the shape variable of an object if we did not
find any feasible point for a given potential shape of that object.

Other Internal Constraints. The standard representation of geometrical constraints
given in Section 3 is an over-simplification. For some constraints, e.g. distance con-
straints, outboxes are not a suitable representation, as the set of forbidden coordinates
cannot be covered by a small number of boxes. Therefore, the constraint kernel inter-
nally handles other representations of necessary conditions, with an appropriate internal
API. For details, see the technical report [5].

5 Performance Evaluation

We evaluate the implementation6 of thegeost kernel from three perspectives:
Wanting to measure the speed and the scalability of the sweepalgorithm for find-

ing a first solution on loosely constrained placement problems (i.e., 20% spare space),
we generated one set of random problem instances ofm k-dimensional boxes for
k ∈ {2, 3, 4} involving t ∈ {1, 16, 256, 1024} distinct types of boxes, and form ∈
{1024, 2048, . . . , 262144}. The results fork = 2 are shown in Fig. 4 (top left) and
indicates that the approach is sensible to the number of distinct types of boxes. It can
typically pack1024 2D, 3D and 4D distinct boxes in at most200 msec. The longest

6 The experiments were run in SICStus Prolog 4 compiled with gcc -02 version 4.0.2 on a 3GHz
Pentium IV with 1MB of cache.
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time, 13694 seconds (close to4 hours), was obtained for packing262144 4D paral-
lelepipeds (over1 million domain variables) with a memory consumption of 351MB.

Wanting to get an idea of the performance of thegeost kernel on very tight place-
ment problems (i.e., 0% spare space), we considered theperfect squared squares prob-
lem [1, 6] as well as the3D pentominoes problem[7]:

– A perfect squared square of ordern is a square that can be tiled withn smaller
squares where each of the smaller squares has a different integer size. We used the
data available (i.e., the size of the small squares to pack) from the catalogue [8] and
tested the corresponding207 instances. The labelling strategy is roughly to repeat
the following, first for thex dimension, then for they dimension:
1. Find the smallest position where some square can be placed.
2. Find a square to place in that position.

– Pentominoesare pieces made of5 connected unit cubes laid on a plane surface.
Their shapes look like the12 lettersF , I, L, P , N , T , U , V , W , X , Y andZ. We
considered the problem of finding the different ways of putting 12 distinct shapes
that can be reflected and rotated in a box having a volume of60 unit cubes. Our
labelling strategy is roughly to repeat the following:
1. Find a slot in the space that has not yet been filled by some piece.
2. Find a piece that can fill that slot.

Fig. 4 (top right) and Table 1 respectively report, for the squared squares and the
pentominoes problems, the time and number of backtracks forexploring all the search
space7 without breaking any symmetry. For the squared squares problems the maxi-
mum time of1585 seconds was spent on problem48; on the other hand,148 problems
were completely solved within60 seconds. For the 3D pentomino packing instances,
performance results for comparison can be found in [7]. However, they stop the search
when the first 100 solutions have been found, so the results are only partly comparable.

Finally, wanting to compare thegeost kernel with a recent exact state of the art
method for the 2D orthogonal packing problem [4], we reused the benchmarks pro-
posed by Clautiaux et al. [9]. This is a feasibility problem which consists in determining
whether a set of rectangles that cannot be rotated, can be packed or not into a rectangle
of fixed size. In these instances the discrepancy between thesum of the areas of the
rectangles to pack and the area of the big rectangle vary from0% to 20%. We have41
instances involving between10 and23 rectangles. Moreover, from these41 instances,
26 instances are not feasible. In order to break symmetries between multiple rectangles
of the same shape we added lexicographic ordering constraints. All x coordinates were
labelled followed by ally coordinates, by decreasing rectangle size. Values were tried
by increasing value. Fig. 4 (bottom) compares our results with the ones reported in [4].
Note that the sequence order for the curves differs, since the instances of each curve
are ordered by increasingy value. We solved all instances and are comparable with [4],
although8 instances are much easier for [4] and10 instances are much easier for us.

Note that for the last three problems (i.e., Squared Squares, Pentominoes and 2D
orthogonal packing) extra filtering algorithms mostly based on cumulative relaxation
were integrated within our kernel. Since this paper focusses on the constraint kernel
and because of space limitations these methods were not detailed.

7 Finding all solutions and proving that there is no other solution.
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6 Related Work and Future Directions

The rectangles packing problem has been studied by Clautiaux et al. [9, 4] where schedul-
ing-based reasoning is used [1]. The use of sweep algorithmsin constraint filtering
algorithms was introduced in [3] and applied to the non-overlapping 2D rectangles con-
straints. This paper generalizes and extends that work in several ways.

– The 2D sweep is generalized to a lexicographic sweep, independent of the number
of dimensions.

– The notion of forbidden regions for non-overlapping rectangles is generalized to
necessary conditions for general geometric constraints.

The idea of generating necessary conditions is reminiscentof indexicals [10], a.k.a.
projection constraints [11]. An indexical for a constraintc(x1, . . . , xn) computes a
unary constraint on a single variablexi, i.e. a setS of values such thatc ⇒ xi ∈ S,
in reaction to domain changes inx1, . . . , xn. The constraint kernel then immediately
enforcesxi ∈ S. Our kernel generalizes this in two ways:

– We compute necessary conditions in the form ofk-dimensional forbidden regions.
– We treat all such forbidden regions, for a selected object and shape, in one run of

the sweep algorithm. Projecting a single forbidden region on one coordinate often
does not yield any pruning, whereas considering the union offorbidden regions is
much more effective.

Dal Palù et al. in [12] proposed a constraint solver specialized for 3D discrete do-
mains. Their solver was targeted to the study of problems in molecular, chemical and
crystal structures. Our work, however, remains in the setting of mainstream finite do-
main constraint systems, whereas our kernel internally handlesk-dimensional objects.

Even though thegeost kernel has been designed over discrete domains, it could
rather easily be extended to continuous domains with the coordinates of the objects
approximated by the floating-point numbersF . Since switching fromN to F may cause
rounding errors at this level, the sweep algorithm needs to handle these rounding errors
when moving the sweep out of an outbox constraint. If the projections of the forbidden
regions on all dimensions are intervals of real bounds we canproceed as follows. On
continuous domains, an outbox will have an very thin strip atthe border where the
feasibility of the corresponding internal constraint is unknown. The region inside this
strip is strictly forbidden, and outside, the constraints is certainly satisfied. The outbox
must be computed including this strip, by taking lower and upper approximations of
the region’s coordinates. In that case, the solutions are guaranteed to be valid, but the
solver may not be complete, because it may (rarely) happen that the real forbidden
region allows positions that are forbidden by its approximation.

This research was conducted under the European Union project “Net-WMS”, a ma-
jor task of which is to study packing problems in warehouse management. In this con-
text, our constraint kernel is a step towards being able to capture a large set of packing
rules in a constraint programming setting. Future work involves extending our set of
external geometric constraints to include such packing rules.
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7 Conclusion

The main contribution of this paper is a geometrical constraint kernel for handling the
location in space and time of polymorphick-dimensional objects subject to various
geometrical and time constraints. The constraint kernel isgeneric in the sense that one
of its parameters is a set of constraints on subsets of the objects. These constraints are
handled globally by the kernel.

We have presented a sweep algorithm for filtering the attributes of the objects.
Thank to its architecture, new geometric constraints can beplugged into this sweep
algorithm without modifying it. The strong point of this sweep algorithm is that it con-
siders all the geometrical constraints for a selected object and shape in one run. As
a first result, more deduction can be performed by combining sets of forbidden points
coming from multiple geometrical constraints. Secondly, it can handle within one single
constraint problems involving up several tens of thousandsof objects without memory
consumption problems, which is often a weak point for constraint programming envi-
ronment. We have also shown that we could handle tight 2D or 3Dplacement problems,
which were traditionally solved by specific approaches.
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configuration backtracks (1st) time (1st) backtracks (all) time (all) solutions
20 × 3 × 1 1434 1840 47381 49740 8
15 × 4 × 1 290 560 888060 939060 1472
12 × 5 × 1 1594 1850 3994455 4112870 4040
10 × 6 × 1 111 260 9688985 10726810 9356
10 × 3 × 2 1267 2370 1203511 1778980 96
6 × 5 × 2 157 730 n/a n/a n/a
5 × 4 × 3 3567 14930 n/a n/a n/a

Table 1. Performance evaluation. 3D pentomino packing instances. Time in milliseconds. “n/a”
corresponds to a quantity that was not available with a time-out of several hours.

References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling and
placement problems.Mathl. Comput. Modelling, 17(7):57–73, 1993.

2. N. Beldiceanu, Q. Guo, and S. Thiel. Non-overlapping constraints between convex poly-
topes. In T. Walsh, editor,Proc. CP’2001, volume 2239 ofLNCS, pages 392–407. Springer-
Verlag, 2001.

3. N. Beldiceanu and M. Carlsson. Sweep as a generic pruning technique applied to the non-
overlapping rectangles constraints. In T. Walsh, editor,Proc. CP’2001, volume 2239 of
LNCS, pages 377–391. Springer-Verlag, 2001.

14



 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1000  10000  100000  1e+06

tim
e

m

t=1
t=16

t=256
t=1024

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250

backtracks
time

 1

 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30  35  40  45

time (we)
time [4]

 1

 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30  35  40  45

backtracks (we)
backtracks [4]

Fig. 4. Performance evaluation. Top left: scalability,t ∈ {1, 16, 256, 1024}. Top right: Perfect
Squared Squares, runtime and backtracks. Bottom: 2D Orthogonal Packing, runtime (left) and
backtracks (right). Time in milliseconds. In each curve, the instances are ordered by increasingy

value.

4. F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A newconstraint programming ap-
proach for the orthogonal packing problem.Computers and Operation Research, to appear.

5. N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A generic geometrical
constraint kernel in space and time for handling polymorphic k-dimensional objects. SICS
Technical Report T2007:08, Swedish Institute of Computer Science, 2007.

6. P. Van Hentenryck. Scheduling and packing in the constraint language cc(FD). In M. Zweben
and M. Fox, editors,Intelligent Scheduling. Morgan Kaufmann Publishers, 1994.

7. A. Colmerauer and B. Gilleta. Solving the three-dimensional pentamino puzzle.
Technical report, Laboratoire d’Informatique de Marseille, 1999. http://www.lim.univ-
mrs.fr/ colmer/ArchivesPublications/Giletta/misc99.pdf.

8. C. J. Bouwkamp and A. J. W. Duijvestijn. Catalogue of simple perfect squared squares of
orders 21 through 25. Technical Report EUT Report 92-WSK-03, Eindhoven University of
Technology, The Netherlands, November 1992.

9. F. Clautiaux, J. Carlier, and A. Moukrim. A new exact method for the two-dimensional
orthogonal packing problem.European Journal of Operational Research, to appear.

10. Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Constraint processing in cc(FD).
Manuscript, 1991.

11. Gregory Sidebottom.A Language for Optimizing Constraint Propagation. PhD thesis, Si-
mon Fraser University, 1993.

12. Alessandro Dal Pal‘u, Agostino Dovier, and Enrico Pontelli. A new constraint solver for
3D lattices and its application to the protein folding problem. In Geoff Sutcliffe and Andrei
Voronkov, editors,Logic for Programming, Artificial Intelligence, and Reasoning, 12th In-
ternational Conference, LPAR 2005, volume 3835 ofLNCS, pages 48–63. Springer-Verlag,
2005.

15


