
Net-WMS FP6-034691

Net-WMS

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Networked Businesses

D6.1: Specification of the knowledge modeller

Due date of deliverable: 15 January 2008

Actual submission date: 31 March 2008

Start date of project: 1 September 2006 Duration: 36 months

Organisation name of lead contractor for this deliverable: KLS OPTIM

Project co-funded by the European Commission with the Sixth Framework Programme
(2002-2006)

Net-WMS D6.1 page 1 of 83

Net-WMS FP6-034691

COVER AND CONTROL PAGE OF DOCUMENT
Project Acronym:

Net-WMS
Project Full Name:

Towards integrating Virtual Reality and optimisation
techniques in a new generation of Networked businesses
in Warehouse Management Systems under constraints

Document id:
D6.1

Document name:
Specification of the knowledge modeller

Document type (PU, INT, RE, CO)
PU

Version:
Final

Submission date:
31 March 2008

Authors:
Organisation:
Email:

Document type PU = public, INT = internal, RE = restricted, CO = confidential

ABSTRACT :
This deliverable defines the Net-WMS packing knowledge modeller: first the architecture of
packing components, then the rule-based Packing Knowledge Modelling Language PKML, its
compilation to constraint programs over finite domains, and its very efficient integration into the
geometric constraint geost. We take the opportunity of this deliverable to produce a glossary of
packing terminology.

KEYWORD LIST :
knowledge modelling, rule-based languages, constraint programming, business rules, bin pack-
ing, global constraints

Net-WMS D6.1 page 2 of 83

Net-WMS FP6-034691

MODIFICATION CONTROL
Version Date Status Author
0 24-02-2008 Draft F. Fages
1 20-03-2008 Reviewed version A. Aggoun
2 27-03-2008 Final version F. Fages

Deliverable manager

• Abder Aggoun, KLS OPTIM

List of Contributors

• Abder Aggoun, KLS OPTIM

• Nicolas Beldiceanu, EMN

• Mats Carlsson, SICS

• Camille Chigot, CEA

• François Fages, INRIA

• Philippe Gravez, CEA

• Julien Martin, INRIA

List of Evaluators

• Nicolas Beldiceanu, EMN

• Olivier Gourguechon, PSA

Net-WMS D6.1 page 3 of 83

Net-WMS FP6-034691

Net-WMS D6.1 page 4 of 83

Contents

1 Introduction to the Net-WMS Knowledge Modeller 7

2 Glossary of Packing Terminology 11

3 Architecture of Packing Components 15
3.1 Exploitation . 16
3.2 Player . 16
3.3 Design . 17
3.4 Packing solver . 18
3.5 Java implementation . 20

4 The Packing Knowledge Modelling Language PKML 23
4.1 Introduction . 23
4.2 The Rules2CP Language . 24

4.2.1 Syntax . 24
4.2.2 Predicates for Search . 26
4.2.3 Simple Examples . 27

4.3 Compilation to Constraint Programs over Finite Domains with Reified Constraints 28
4.3.1 Generic Rewrite Rules . 29
4.3.2 Inlining Rules for Target CP Builtins 30
4.3.3 Confluence, Termination and Complexity 31

4.4 The Packing Knowledge Modelling Library PKML 33
4.4.1 Shapes and Objects . 33
4.4.2 Placement Relations . 34
4.4.3 Packing Business Rules and Patterns . 36
4.4.4 Compilation to the Global Constraint geost 37

4.5 Related Work . 37
4.5.1 Comparison to Business Rules . 37
4.5.2 Comparison to OPL and Zinc . 38
4.5.3 Comparison to Constraint Logic Programming 38
4.5.4 Comparison to Term Rewriting Systems Tools and Compilation to Con-

straint Solvers in Java . 39
4.6 Conclusion . 39
4.7 Appendix A: Allen’s Interval Relations Library 39
4.8 Appendix B: Region Connection Calculus Library 41
4.9 Appendix C: PKML Library . 42

5

Net-WMS FP6-034691

4.10 Appendix D: Small Example with Weights . 43

5 Extra Features of PKML for Virtual Reality 47
5.1 Object Parameters . 47

5.1.1 vr shape . 47
5.1.2 vr displacement . 48

5.2 Shape Parameters . 48
5.2.1 vr rotation . 48

5.3 Additional parameters for physical simulations 48

6 A Geometric Constraint over k-Dimensional Objects and Shapes Subject to Busi-
ness Rules 49
6.1 Introduction . 49
6.2 The Rule Language: Syntax and Features . 51
6.3 QFPA Core Fragment . 54

6.3.1 Rewriting into QFPA . 54
6.4 Compiling to an Efficient Run-Time Representation 58

6.4.1 Necessary Conditions . 58
6.4.2 Pruning Rules . 58
6.4.3 k-Indexicals . 61
6.4.4 Compilation . 62
6.4.5 Filtering Algorithm . 64

6.5 Polymorphism . 66
6.6 Experimental Results . 67
6.7 Conclusion and Open Issues . 68
6.8 Appendix A: Prolog Syntax . 69
6.9 Appendix B: Region Connection Calculus Rules 70

6.9.1 Rules for RCC-8 Relations between Two Shifted Boxes 71
6.9.2 Rules for RCC-8 Relations between Two Objects 72

6.10 Appendix C: A Real-Life Problem Instance . 73
6.11 Appendix D: A Packing-Unpacking Problem 76

Net-WMS D6.1 page 6 of 83

Chapter 1

Introduction to the Net-WMS
Knowledge Modeller

The scientific challenge addressed in the project is the integration of Constraint Programming
(CP) and a Rule Based (RB) language in order to achieve an expressive and efficient knowledge
modelling language for stating knowledge in Warehouse Management Systems (WMS) as pack-
ing rules (c.f. Figure 1.1). Rules are expressed by experts to define constraints over objects to
pack in containers (e.g. a pallet, maritime box). In order to ease the understanding of the ap-
proach chosen in the Net-WMS project we will detail step by step the key points and concepts
developed in the project. When necessary, concepts are illustrated using knowledge examples
taken from packing problems.

CP is a programming language used by experts in optimisation to encode models to solve
combinatorial problems. It is not dedicated for non-experts in optimisation and less for experts
in WMS.

Figure 1.1: Integration of CP and RB

In a rule based language, rules are independent from each other. Rules can be checked and
modified independently and then introduced in the knowledge database one by one. The mod-
elling language for expressing packing rules must respect these features and concepts of RB
languages. The investigated approach is to allow the user to express the expertise in terms of
rules which are then transformed into CP Program as highlighted in Figure 1.2.

Figure 1.2: Transformation of rules into CP programs

7

Net-WMS FP6-034691

The aim of the project is to design a knowledge modelling language for non-programmers to
express packing rules to be compiled into CP programs. The language is called PKML and
stands for Packing Knowledge Modelling Library. The main objective is to focus first on
packing problems. However, concepts chosen in the specifications make PKML open to other
domains than packing problems. It is a major advantage to integrate optimisation and especially
CP techniques in other domains.

So far in the Net-WMS project, CP systems (SICStus Prolog, Choco-Java) have been enriched
with a new global constraint called Geost [c.f. deliverable D4.1]. It allows expressing geometrical
constraints for non-overlapping objects in k dimensions. For example in pallet packing, it is used
to model non-overlapping between boxes (3D) on a pallet. The availability of this constraint has
contributed a lot to compiling packing rules into efficient CP programs.

In the test cases [c.f. deliverable D2.2] we have identified a set of classes of packing con-
straints. For example, if the type attribute of two objects both equal 1 then the two objects should
not meet (c.f. Figure 1.3).

Figure 1.3: meet(A,B) constraint.

Constraints like meet(A,B), covers(A,B) etc. are classified as side constraints. Global con-
straints have traditionally been extended with new arguments to handle each such class of side
constraints From the implementation point of view, each side constraint will require its specific
handling algorithm. This approach will lead to a poor way of expressing constraints and com-
bining them. This approach will not contribute efficiently to the compilation of packing rules
into CP programs. Contrary to this, the approach chosen in Net-WMS is the development of a
generic rule language in the geost constraint. With this generic rule language, a wide range of
side constraints may be expressed. A CP system extended by the Geost constraint with the Geost
rule language can be seen as a natural target language for the transformation of the packing rules
into CP programs. The approach proposed is that the integrated rule language features are de-
rived from features of the packing rule language. It can be seen as a subset of the packing rule
language (see Figure 1.4).

Figure 1.4: Transformation of rules into CP programs

The approach chosen is motivated by the fact that it will ease the transformation of pack-

Net-WMS D6.1 page 8 of 83

Net-WMS FP6-034691

ing rules into an efficient CP program. In fact, the compilation of rules will use robust and
well known rewriting techniques which are described below in the report. The system which
transforms PKML rules into CP programs is called Rules2CP (from Rules to Constraint
Programming).

Another advantage of this approach is that the CP system is enriched by two developments,
the Geost constraint and the integrated rule language, both of which are major contributions. CP
developers will have the possibility to use the Geost rule language to develop efficient packing
applications independently from the packing rule language.

PKML is a language containing data structures, a limited number of types, arithmetic opera-
tors and logical expressions with quantifiers “forall”, “exists”, etc. Experts in packing having a
good background in computer science will be able to use the PKML language directly. As the
target of the project is end-users that are non-experts in computer-science however, dedicated
graphical interfaces for editing PKML rules will be developed, for instance with spreadsheets or
standard business rules editors (Figure 1.5).

Figure 1.5: Non-expert users’ interfaces

The graphical interface rule (GUI Rule) for PKML is a guided editor for expressing
packing rules; it allows the packing expert to build rules in a GUI driven fashion using wizard
menus based on PKML entities.

In order to ease the editing of the expertise, each rule is mapped into XML structures. There-
fore, the user can load an existing rule, do changes and then save it. As explained above rules
are independent from each other. The XML format will ease the integration into business ap-
plications and complex architectures. The result is a specification called PackXML for packing
problems. This is a major contribution of Net-WMS for contributing to standards in logistics.

The report is organised in several and independent sections:
Chapter 2 contains a glossary of words and explanations to ease the understanding of the

report.
Chapter 3 introduces the general architecture;
Chapter 4 details the PKML language as an instance of the general rule-based modelling

language Rules2CP;
Chapter 5 describes some additional features of PKML for virtual reality components;

Net-WMS D6.1 page 9 of 83

Net-WMS FP6-034691

Chapter 6 is dedicated to the subset of PKML integrated in the geometric global constraint
Geost.

Net-WMS D6.1 page 10 of 83

Chapter 2

Glossary of Packing Terminology

The aim of the section is to give a definition of key words as used in logistics in order to ease the
understanding of the technology developed within Net-WMS. A set of technical words used in
logistics are well defined in the encyclopaedia http://en.wikipedia.org. When possible
we will use definitions from this encyclopaedia. When necessary some comments are added to
ease the understanding in the context of the Net-WMS project.

Pallet: Normally found as a wooden platform without sides, which is used for stacking a num-
ber of packages on in preparation for loading and distribution to their destination. It is common
to find that the pallets have space underneath so that they can be lifted by mechanical equipment
such as forklift trucks.

Remark: Pallets are commonly used in distribution warehouses. In car manufacturing, one can
find several types of pallets. Therefore we distinguish non standard and standard pallets like ISO
Pallets, North American Pallets and European pallets. Pallet users want pallets to easily pass
through buildings, stack and fit in racks, forklifts, pallet jacks and automated warehouses. To
avoid shipping air, pallets should also pack tightly inside containers and vans.

Container: A trailer body that can easily be detached from a truck chassis for loading onto a
vessel, a rail car, or stacked in a container depot. A container may be varied in length and width.
Containers may be ventilated, refrigerated, insulated, vehicle rack, flat rack, open top, bulk liquid
or equipped with interior devices.

Packaging is the science, art and technology of enclosing or protecting products for distri-
bution, storage, sale, and use. Packaging also refers to the process of design, evaluation, and
production of packages. Package labelling or labelling is any written, electronic, or graphic com-
munications on the packaging or on a separate but associated label. Packaging may be looked at
as several different types. For example a transport package or distribution package is the package
form used to ship, store, and handle the product or inner packages. Some identify a consumer
package as one which is directed toward a consumer or household.

Remark: It is sometimes convenient to categorize packages by layer or function: ”primary”,
”secondary”, etc.

Primary packaging is the material that first envelops the product and holds it. This usually
is the smallest unit of distribution or use and is the package which is in direct contact with the
contents.

Secondary packaging is outside the primary packaging perhaps used to group primary pack-
ages together.

11

Net-WMS FP6-034691

Tertiary packaging is used for bulk handling, warehouse and transport shipping. The most
common form is a palletized unit load that packs tightly into containers.

PKML is the knowledge modelling language developed in Net-WMS to express packing
business rules and problems. PKML models are compiled into constraint programs and in the
Geost constraint using the Rules2CP transformation scheme.

A unit load combines packages or items into a single ”unit” of a few thousand kilograms
that can be moved easily with simple equipment (e.g. pallet jack). A unit load packs tightly into
warehouse racks, containers, trucks, and railcars, yet can be easily broken apart at a distribution
point, usually a distribution centre, retail store, etc. Most consumer and industrial products move
through the supply chain in unitized or unit load form for at least part of their distribution cycle.
Unit loads make handling, storage, and distribution more efficient. They help reduce handling
costs and damage by reducing individual handling. A typical unit load might consist of corru-
gated fibreboard boxes stacked on a pallet and stabilized with stretch wraps or other materials.

Remark: Unit loads, pallets and containers are the most commonly used packing units in Net-
WMS.

A box describes a variety of containers and receptacles. When no specific shape is described, a
typical rectangular box may be expected. Nevertheless, a box may have a horizontal cross section
that is square, elongated, round or oval; sloped or domed top surfaces, or non-vertical sides.
Whatever its shape or purpose or the material of which it is fashioned, it is the direct descendant
of the chest, one of the most ancient articles of domestic furniture. Its uses are innumerable,
and the name, preceded by a qualifying adjective, has been given too many objects of artistic or
antiquarian interest. Objects are often placed inside boxes, for a variety of reasons.

Remark: Boxes are key units in packing in Net-WMS. Complex objects are modelled as as-
semblies of other objects where their corresponding shapes are approximated by boxes.

Packing problems are one area where mathematics meets puzzles. Many of these problems
stem from real-life packing problems. In a packing problem, you are given: one or more (usually
two- or three-dimensional) containers; several goods, some or all of which must be packed into
this container.

Usually the packing must be without gaps or overlaps, but in some packing problems the
overlapping (of goods with each other and/or with the boundary of the container) is allowed but
should be minimised. In others, gaps are allowed, but overlaps are not (usually the total area of
gaps has to be minimised).

A puzzle is a problem that challenges ingenuity. In a basic puzzle you piece together objects
in a logical way in order to come up with the desired shape, picture or solution. Puzzles are
often contrived as a form of entertainment, but they can also stem from serious mathematical or
logistical problems. In such cases, their successful resolution can be a significant contribution to
mathematical research (refer to bin packing problems).

Remark: Packing problems are essential for logistical problems and especially for transport.
In optimisation many variants of packing problems are treated as bin packing problems; a very
active research area.

Business rules describe and control the structure, operation and strategy of an organisation.
Business rules are separated from the application code and mainly the engine. Business rules
can be changed independently. Modern engine business rules combine the power of rule-based
programming and object-oriented programming.

Geost constraint is a new global constraint developed in the context of the Net-WMS project.
It allows expressing geometrical constraints for non-overlapping objects in k dimensions. For

Net-WMS D6.1 page 12 of 83

Net-WMS FP6-034691

example, in pallet packing it can be used to model non-overlapping boxes (3D) in a pallet.
Geost rules are additional rules which are compiled and handled as part of the Geost con-

straint which is extended with a limited macro language to define such additional rules on the
non-overlapping objects.

Packing rules are rules describing packing expertise. They are compiled in a target CP lan-
guage.

PackXML is the XML Schema to express packing rules.
Rules2CP is the general rule-based knowledge modelling language which transforms rules

into constraint programs and in which the dedicated library PKML is written.

Net-WMS D6.1 page 13 of 83

Net-WMS FP6-034691

Net-WMS D6.1 page 14 of 83

Chapter 3

Architecture of Packing Components

The general architecture proposed in Net-WMS is shown in Figure 3.1. In this section we will
highlight the packing modules. Concepts of the knowledge modeller and especially of the pack-
ing knowledge modelling language are detailed in the other sections.

Figure 3.1: Innovative Net-WMS J2EE architecture

Data layer: The data layer will include the systems own database, integration with ERP
databases or other legacy/standard systems.

Business layer: The business layer is a middleware set of components that interact among
themselves. The components encapsulate the optimisation knowledge and complexity of pal-

15

Net-WMS FP6-034691

letising, dispatching and scheduling.
Services and tools to develop business process applications: The services and tools de-

scribed illustrate the foundations of the three business applications proposed (Palletizer, Dis-
patcher and Scheduler), and could alternatively be seen also as middleware Business Applica-
tions.

The word “Palletizer” as described in Figure 3.1 is too restrictive in packing. We will use in-
stead words like business packing component or packing module; which is a complete process of
packing including different functionalities: creating and editing knowledge rules, solving optimi-
sation packing problems, visualisation of packing results. In order to highlight the exploitation of
the modelling language, it is necessary to detail the different components of a business packing
component. By zooming in Figure 3.1, the module Knowledge rules corresponds to Figure 1.4
and Figure 1.5.

3.1 Exploitation

Figure 3.2 shows the exploitation architecture of the packing module. Orders or nomenclatures
to pack are handled in the WMS module. The packing module is called several times to perform
the packing activities. The manager selects orders and launches the packing solver.

Figure 3.2: General architecture exploitation

The business packing component is structured into components:
Packing container: the logic of packing. This is the main entry to drive the different compo-

nents of the packing module.
Packing solver: the optimisation; this components takes well defined inputs and produces

results which are then processed by the packing container.
Packing Player: 3D visualisation of containers and items of the containers. The packing

player is expected to run in Applet in a web application.
Packing Designer: this module allows the user to design packing modules. The user can edit

a configuration, fix items and launch the solver to complete packing (see Figure 3.3).

3.2 Player

The player is a plug-in which must comply with the following requirements summarized in
Figure 3.4:

• Case 1: the player is installed as rich client application

– Input: XML files or Data Base

Net-WMS D6.1 page 16 of 83

Net-WMS FP6-034691

Figure 3.3: General architecture of Business packing component

– Visualisation of the loads (bins):

∗ Bin data (the container)
∗ Items (content)
∗ All specific information for bins and items are displayed provided as properties

• Case 2: the player is called from a web application for end users

– Input: Data Base

– Visualisation of the loads (bins)

• Case 3: the player is called from a web application by the packing solver. The user is
performing simulation.

– Input: XML files or Data base

– Visualisation of the loads

Figure 3.4: General architecture of Packing player component

3.3 Design

Figure 3.5 depicts the general architecture of the plug-in components packing solver.

Net-WMS D6.1 page 17 of 83

Net-WMS FP6-034691

Figure 3.5: General architecture of the plug-in components Packing Solver

3.4 Packing solver

We distinguish two classes of solvers:

1. the business packing solver

2. and the optimisation packing solver.

The business packing solver can be seen as a companion of a warehouse management system.
It is either integrated in the application as a standalone application or as an integrated module in
a WMS. For its exploitation, we need to distinguish three phases:

1. it reads the data

2. it solves the packing problem by calling one or several time the optimisation packing
solver.

3. it produces packing results.

The optimisation packing solver is referred here as PKML solver (Figure 3.6).
The Net-WMS expects to provide two possible implementations of the PKML solver. A first

implementation in constraint logic programming based on SICStus Prolog, used for rapid pro-
totyping and for accessing already implemented powerful global constraints. A second imple-
mentation in a Java platform based on Choco, for easier integration with the other Net-WMS
components and for their industrial deployment.

If the PKML solver is designed as a black box then its exploitation will be limited to well-
known scenarios. Therefore, a glass box is suited to cope with various and complex scenarios in
today’s logistics. This is mainly motivated by the following cases:

• The expression of PKML strategies is limited, dedicated strategies are suited to come up
with quality solution.

• The existing constraints in PKML Solver are not sufficient to handle the packing problem
of the user. Logistics evolve and we may need extra constraints.

Net-WMS D6.1 page 18 of 83

Net-WMS FP6-034691

Figure 3.6: General architecture of the interaction between the packing solver and PKML solver

KLS OPTIM is mainly interested by the result of transforming PKML Rules into PKML
CPRules. The result is a Java class which can be easily integrated in its business packing solver.

Remark: As explained above, the optimisation solver can be called several hundred times to
solve parts of the problems. The business packing module is responsible of the management of
the optimisation solver. When solving packing problems with nomenclatures (carton in pallets,
pallets in containers, etc.), rules are changing from one instance to another one.

Scenario 1: The packing solver generates a complete PKML instance (data, rules, strategies).
The optimisation solver is called with the right parameters and computes the best solution which
is then processed by the business packing (saving in database, etc.).

Scenario 2: The packing solver generates a partial PKML instance (data, rules) but not the
strategies. The compiler transforms the PKML rules into a CP module which is then integrated
for example in the KLS OPTIM PKML Solver; which in turn solves the problem and processes
the obtained results.

Scenario 3: The packing solver generates a partial PKML instance (partial data, rules) and
not the strategies. By partial data, the business packing solver allows the PKML solver to share
its objects (bins, objects to pack). The PKML compiles the rules and produces a CP module
which is then integrated for example in the KLS OPTIM PKML Solver; which in turn solves the
problem and processes the obtained results. For example, this is a typical case when designing
new packing configuration to create patterns.

This is a typical packing in distribution platform. The objective is to call the packing solver
thousands of times with a complete transparency to the user, see Figures 3.7 and 3.8.

Net-WMS D6.1 page 19 of 83

Net-WMS FP6-034691

Figure 3.7: A single step of the Packing Solver

3.5 Java implementation

The first prototype of the modelling language will be developed in SICStus Prolog. The rewriting
engine of Rules2CP requires reification techniques to compile rules into a target language. For
“PKML CPRules” the result could be one of the following forms:

1. A Java program to compile;

2. An XML file to read and to transform into Java objects (instances of Java classes);

3. Instances of Java classes (compilation on the fly).

One of the potential tools to use to compile rules is TOM (http://tom.loria.fr).

• Tom is a software environment for defining transformations in Java.

• Tom is an extension of Java designed to manipulate tree structures and XML documents.

• Tom is compatible with Java: any Java program is a correct Tom program.

• Data are represented using an efficient object oriented tree based data-structure.

• Java built-ins (int, char, String, etc) can be used.

• Tom provides pattern matching facilities to inspect objects and retrieve values.

• A powerful strategy language can be used to control transformations.

• Tom is used in several companies to implement transformations of programs and queries.

The software is available as an Eclipse plug-in and released under the GPL General Public
License1, and the BSD license2. Tom is a potential candidate for the implementation of the
engine of Rules2CP in Java.

1http://www.gnu.org/copyleft/gpl.html
2http://www.opensource.org/licenses/bsd-license.php

Net-WMS D6.1 page 20 of 83

Net-WMS FP6-034691

Figure 3.8: Multiple steps of the Packing Solver

Net-WMS D6.1 page 21 of 83

Net-WMS FP6-034691

Net-WMS D6.1 page 22 of 83

Chapter 4

The Packing Knowledge Modelling
Language PKML

4.1 Introduction

From a programming language standpoint, one striking feature of constraint programming is its
declarativity for stating combinatorial problems, describing only the “what” and not the “how”,
and yet its efficiency for solving large size problem instances in many practical cases. From
a non-expert user standpoint however, a constraint program is not as declarative as one would
wish, and constraint programming languages are in fact very difficult to use by non-expert users
outside the range of already treated example problems. This well recognized difficulty has been
presented as a main challenge for the constraint programming community, and has motivated the
search for more declarative front-end problem modelling languages, such as most notably OPL
[33] and Zinc [27, 12]. In these languages, a problem is modelled with variables, arrays, primitive
constraints, set constructs, iterators and quantifiers. Such a problem model can then be mapped to
a constraint program, a mixed integer linear program [25], a combination of both [33], or a local
search program [34] for solving it. Despite the undeniable progress towards more declarativity
and independence from the solving techniques achieved by these front-end modelling languages,
one cannot nevertheless say that this is sufficient to make constraint programming easy to use by
non-experts in the industry.

In the industry, the Business Rules approach to knowledge representation has a wide audience
because of the property of independence of the rules which can be introduced, checked, and
modified independently of the others, and independently of any particular procedural interpreta-
tion by a rule engine [17]. This provides an attractive knowledge representation scheme in the
industry for fastly evolving regulations and constraints, and for maintaining systems with up to
date information.

In this chapter, we argue that the business rules knowledge representation paradigm can be de-
velopped as a front-end modelling language for constraint programming. We present the PKML
modelling language for packing problems, as a library of a general purpose rule-based mod-
elling language for constraint programming, called Rules2CP. PKML and Rules2CP rules are
not general condition-action rules, also called production rules in the expert system community,
but logical rules with one head and no imperative actions, and where bounded quantifiers are
used to represent complex conditions. They comply to the business rules manifesto [17], and in
particular to the independence from procedural interpretation which is concretely demonstrated

23

Net-WMS FP6-034691

in Rules2CP by their compilation to constraint programs using a completely different represen-
tation, instead of their execution by a rule engine. As a consequence, the rule language proposed
in this chapter comes with a simple semantics in classical first-order logic, instead of the default
logics usually considered in the rule-based knowledge representation community [35, 14].

Furthermore, our aim at designing a knowledge modelling language for non-programmers led
us to abandon recursion and data strutures such as arrays and lists, and retain only feature terms
(records) and finite collections (enumerated lists) with quantifiers and aggregates as iterators. In
the next section, we present the syntax of Rules2CP, its predefined functions and predefined pred-
icates for specifying search strategies in a declarative manner, and illustrate the main language
constructs with simple examples of combinatorial and scheduling problems.

Then in Sec. 4.2, we present how Rules2CP models compile into constraint programs over
finite domains with reified constraints, using a term rewriting system and partial evaluation. We
show the confluence of these transformations and provide a complexity bound on the size of the
generated constraint program.

Then in Sec. 4.4, we illustrate the expressive power and efficiency of this approach with a par-
ticular Rules2CP library, called the Packing Knowledge Modelling Library (PKML), developed
for dealing with real-size non-pure bin packing problems coming from the automotive industry.
In addition to pure bin packing and bin design problems, we show the capability of PKML to ex-
press packing business rules taking into consideration, for instance, stacking constraints w.r.t. the
weight of objects, their difference of size, and other common sense requirements or industrial
expertise. Furthermore, we show how a large subset of PKML rules can be directly compiled into
the geometric global constraint geost [4] and its integrated rule language which is essentially
a subset of PKML, as shown in Chapter 6.

Finally in Sec. 4.5 we discuss the main features of Rules2CP by comparing them to other for-
malisms: business rules, OPL and Zinc modelling languages, constraint logic programming and
term rewriting systems. We conclude on the generality of this approach for rule-based knowledge
modelling as a front-end to constraint programming.

4.2 The Rules2CP Language

4.2.1 Syntax

Rules2CP is a term rewriting rule language based on first-order logic with bounded quantifi-
cation and aggregate operators. Its only data structures are integers, strings, enumerated lists
and records. Because of the importance of naming objects in Rules2CP, the language includes a
simple module system that prefixes names with module and package names [18].

The syntax of Rules2CP is given in Table 4.2.1. An ident is a word beginning with a lower case
letter or any word between quotes. A name is an identifier that can be prefixed by other identifiers
for module and package names. A variable is a word beginning with either an upper case letter
or the underscore character . The set, denoted by V (E), of free variables in an expression E
is the set of variables occurring in E and not bound by a forall, exists, let, map or
aggregate operator. The size of an expression or a formula is the number of nodes in its tree
representation.

In a Rules2CP file, the order of the statements is not relevant. Recursive definitions and
multiple definitions of a same head symbol are not allowed. In a rule, L-->R, we assume
V (R) ⊆ V (L), whereas in a declaration, H=E, the variables in V (E) \ V (H) represent the

Net-WMS D6.1 page 24 of 83

Net-WMS FP6-034691

statement ::= import name. module import
| head = expr. declaration
| head --> fol. rule
| ? fol. goal

head ::= ident
| ident(variable,...,variable)

fol ::= varbool boolean
| expr relop expr comparison
| expr in expr domain
| name
| name(expr,...,expr) relation
| not fol negation
| fol logop fol logical operator
| forall(variable,expr,fol) universal quantifier
| exists(variable,expr,fol) existential quantifier
| let(variable,expr,fol) variable binding
| aggregate(variable,expr,logop,fol,fol) logical aggregate

expr ::= varint
| fol reification
| string
| [enum] list
| {name = expr,...,name= expr} record
| name
| name(expr,...,expr) function
| expr op expr
| aggregate(variable,expr,op,expr,expr)
| map(variable,expr,expr) list mapping

enum ::= enum , enum enumeration
| expr value
| expr .. expr interval of integers

varint ::= variable
| integer

varbool ::= variable
| 0 false
| 1 true

op ::= + | − | ∗ | / | min | max
relop ::= < | =< | = | /= | >= | >
logop ::= and | or | implies | equiv | xor
name ::= ident

| name:ident module prefix

Table 4.1: Syntax of Rules2CP.

Net-WMS D6.1 page 25 of 83

Net-WMS FP6-034691

unknowns of the problem.
An expression expr can be a fol formula considered as a 0/1 integer. This coercion between

booleans and integers is called reification and provides a great expressiveness. The grammar does
distinguish however the logical formulas from other expressions. For instance, a goal cannot be
any expression but a logical formula.

The aggregate operator cannot be defined in first-order logic and is a Rule2CP builtin. This
operator iterates the application of a binary operator (given in the third argument), to copies of
the expression given in the last argument, where the variable in the first argument is replaced by
the successive elements of the list given in the second argument. For instance, the product of the
elements in a list is defined by product(L)=aggregate(X,L,*,1,X).

Lists of expressions can be formed by enumerating their elements, or intervals of values in the
case of integers. For instance [1,3..6,8] represents the list [1,3,4,5,6,8]. Such lists
are used to represent the domains of variables both in var in list formula, and in the answers
returned to Rules2CP goals.

The following expressions are predefined for accessing the components of lists and records:

• length(list) returns the length of the list (after expansion of the intervals), or an error
if the argument is not a list.

• nth(integer,list) returns the element of the list in the position (counting from 1) indicated
by the first argument, or an error if the second argument is not a list containing the first
argument.

• pos(element,list) returns the first position of an element occurring in a list as an integer
(counting from 1), or returns an error if the element does not belong to the list.

• attribute(record) returns the expression associated to an attribute name of a record, or
returns an error if the argument is not a record or does not have this attribute.

Furthermore, the predefined function

• variables(expr)

returns the list of variables contained in an expression. The predefined predicates

• X in list

• domain(expr,min,max)

constrains the variable X (resp. the list of variables occurring in the expression expr) to take
integer values in a list of integer values (resp. between min and max).

4.2.2 Predicates for Search

Describing the search strategy in a modelling language is a challenging task as search is usually
considered as inherently procedural, and thus contradictory to declarative modelling. This is
however not our point of view in Rules2CP. Our approach to this question is to specify the
decision variables and the branching formulas of the problem in a declarative manner. Decision
variables can be declared with the predefined predicate

• labeling(expr)

Net-WMS D6.1 page 26 of 83

Net-WMS FP6-034691

for enumerating the possible values of all the variables contained in an expression, that is occur-
ring as attributes of a record, or recursively in a record referenced by attributes, in a list, or in
a first-order formula. This labeling predicate thus provides an easy way to refer to the variables
contained in an object or in a formula, without having to collect them explicitly in a list as is usu-
ally done in constraint programs. Moreover, Branching formulas can be declared in Rules2CP
with the predicate

• search(fol)

This more original predicate specifies a search by branching on all the disjunctions and existen-
tial quantifications occurring in a first-order formula. Note that a similar approach to specifying
search has been proposed for SAT in [22]. Here however, the only normalization is the elimi-
nation of negations in the formula by descending them to the constraints. The structure of the
formula is kept as an and-or search tree where the disjunctions constitute the choice points.

Optimization predicates are also defined as usual:

• minimize(expr) for minimizing an expression

• maximize(expr) for maximizing an expression

but with no restriction on their number of occurrences in a formula. This makes it possible to
express multicriteria optimization problems and the search for Pareto optimal solutions according
to the lexicographic ordering of the criteria as read from left to right.

Adding the capability to express heuristic search knowledge in Rules2CP is mandatory for
efficiency. This is done by adding options to the labeling predicate for specifying the variable
choice heuristics as well as the value choice heuristics. Options that are standard in constraint
programming systems like [2, 9], have been adapted to the Rules2CP labeling predicate, namely
for the variable choice heuristics: leftmost, smallest lower bound min, greatest upper bound
max, smallest domain ff, most constrained ffc options ; and step, enum, bisect for
the value choice heurisitcs. This is a first step toward a more general modelling of heuristic
knowledge using all the power of Rules2CP rules for defining heuristic choice functions for the
search predicate as well.

4.2.3 Simple Examples
Example 1 The N-queens problem can be modelled in Rules2CP with declarations for creating
a list of records representing the position of each queen on the chess board, and with one rule
for stating when a list of queens do not attack each other, another rule for stating the constraints
of a problem of size N , and a goal for stating the size of the problem to solve:

q(I)= {row=_, column=I}.
board(N)= map(I, [1 .. N], q(I)).
safe(L) -->
forall(Q, L,
forall(R, L, let(I, column(Q), let(J, column(R),
I<J implies row(Q) /= row(R)

and row(Q) /= J-I+row(R)
and row(Q) /= I-J+row(R))))).

solve(N) -->
let(B, board(N), domain(B,1,N) and safe(B) and

labeling([bisect,up],B)).
? solve(8).

Net-WMS D6.1 page 27 of 83

Net-WMS FP6-034691

In such a simple example, there is no point in separating data from rules in different files but
this is recommended in larger examples using import statements.

Example 2 A disjunctive scheduling problem can be modelled as follows:

t1 = {start=_, dur=1}. t2 = {start=_, dur=2}.
t3 = {start=_, dur=3}. t4 = {start=_, dur=4}.
t5 = {start=_, dur=2}. t6 = {start=_, dur=0}.
cost = start(t6).
precedences --> prec(t1,t2) and prec(t2,t3) and

prec(t3,t6) and prec(t1,t4) and
prec(t4,t5) and prec(t5,t6).

disjunctives --> disj(t2,t5) and disj(t4,t3).
prec(T1,T2) --> start(T1)+dur(T1) =< start(T2).
disj(T1,T2) --> prec(T1,T2) or prec(T2,T1).
solve --> start(t1)>=0 and cost<20 and precedences

and search(disjunctives) and minimize(cost).
? solve.

The solve rule posts the precedence constraints, and develops a search tree for the disjunctive
constraints without labeling variables. Note that the instantiation of the cost is usually required
in CP minimization predicates and the labeling of the cost expression is thus automatically added
by the Rules2CP compiler according to the target language, as shown in the next section on
compilation. The answer computed by the solver is translated back to Rules2CP with domain
expressions for the variables. The rule

solve2 --> start(t1)>=0 and cost<20 and precedences
and disjunctives and search(disjunctives)
and minimize(cost).

adds the disjunctive constraints for pruning, and develops a similar search tree. The rule

solve3 --> start(t1)>=0 and cost<20 and precedences
and disjunctives and search(disjunctives)
and labeling(precedences) and minimize(cost).

adds the labeling of variables for getting ground solutions.

4.3 Compilation to Constraint Programs over Finite Domains with
Reified Constraints

Rules2CP models compile to constraint satisfaction problems over finite domains with reified
constraints by interpreting Rules2CP statements using a term rewriting system, i.e. with a rewrit-
ing process that rewrites subterms inside terms according to general term rewriting rules. The
Rules2CP declarations and rules provide the term rewriting rules, while the Rules2CP goals pro-
vide the terms to rewrite. The term rewriting relation of the compilation process is denoted by
→csp. It is worth noticing that for user-interaction at runtime and debugging purposes, book-
keeping information needs to be implemented in this transformation in order to maintain the
dependency from CP variables back to Rules2CP statements [15]. This is described in the fol-
lowing.

Net-WMS D6.1 page 28 of 83

Net-WMS FP6-034691

4.3.1 Generic Rewrite Rules

The following term rewriting rules are associated to Rules2CP declarations and rules:

• L →csp R for every rules of the form L --> R and declarations of the form L = R with
V (R) ⊆ V (L);

• Lσ →csp Rσθ for every declarations of the form L = R with V (R) 6⊆ V (L) and every
ground substitution σ of the variables in V (L), where θ is a renaming substitution that
gives unique names indexed by Lσ to the variables in V (R) \ V (L).

In a Rules2CP rule, all variables in the right-hand side have to appear in the left-hand side. In
a Rules2CP declaration, there can be free variables introduced in the right hand side and their
scope is global. Hence these variables are given unique names (with substitution θ) which will be
the same at each invocation of the object. These names are indexed by the left-hand side of the
declaration statement which is supposed to be ground in that case (substitution σ). For example,
the row variables in the records declared by q(N) in Example 1 are given a unique name indexed
by the instances q(i) of the head1. It is worth noting that in rules as in declarations, the variables
in L may have several occurrences in R, and thus that subexpressions in the expression to rewrite
can be duplicated by the rewriting process.

The ground arithmetic expressions are rewritten with the following evaluation rule:

• expr →csp v if expr is a ground expression and v is its value,

This rule provides a partial evaluation mechanism for simplifying the arithmetic expressions as
well as the boolean conditions. This is crucial to limiting the size of the generated program and
eliminating at compile time the potential overhead due to the data structures used in Rules2CP.

The accessors to data structures are rewritten in the obvious way with the following rule
schemas that impose that the lists in arguments are expansed2:

• [i .. j] →csp [i, i + 1,...,j] if i and j are integers and i ≤ j

• length([e1,...,eN]) →csp N

• nth(i,[e1,...,eN]) →csp ei

• pos(e,[e1,...,eN]) →csp i where ei is the first occurrence of e in the list after rewrit-
ing,

• attribute(R)→csp V if R is a record with value V for attribute.

The quantifiers, aggregate, map and let operators are binding operators which use a dummy
variable X to denote place holders in an expression. They are rewritten under the condition that
their first argument X is a variable and their second argument is an expansed list, by duplicating
and substituting expressions as follows:

• aggregate(X,[e1,· · ·,eN],op,e,φ)→csp φ[X/e1] op...op φ[X/eN] (e if N = 0)

1In this example, the unique names given to the row variables are Q i 1 as they are the first anonymous variables
in the records, which is simplified into Q i as they are the only variables in the records.

2The expansion rule for intervals in lists is given here for the sake of simplicity of the presentation. For efficiency
reasons however, this expansion is not done in some built-in predicates which accept lists of intervals, like for instance
X in list.

Net-WMS D6.1 page 29 of 83

Net-WMS FP6-034691

• forall(X,[e1,· · ·,eN],φ)→csp φ[X/e1] and ... and φ[X/eN] (1 if N = 0)

• exists(X,[e1,· · ·,eN],φ)→csp φ[X/e1] or ... or φ[X/eN] (0 if N = 0)

• map(X,[e1,· · ·,eN],φ)→csp[φ[X/e1], ..., φ[X/eN]]

• let(X,e,φ) →csp φ[X/e]

where φ[X/e] denotes the formula φ where each free occurrence of variable X in φ is replaced
by expression e (after the usual renaming of the variables in φ in order to avoid name clashes
with the free variables in e).

Negations are eliminated by descending them to the comparison operators, with the obvious
duality rules for the logical connectives, such as for instance, the rewriting of the negation of
equiv is rewritten with xor. It is worth noting that these transformations do not increase the
size of the formula.

4.3.2 Inlining Rules for Target CP Builtins

The constraint builtins of the target language (including global constraints) are specified with
specific inlining rules. Such rules are mandatory for the terms that are not defined by Rules2CP
statements, as well as for the arithmetic and logical expressions that are not expanded with the
generic rewrite rules described in the previous section. The result of an inlining rule is called a
terminal term.

The free variables in declarations are tanslated into finite domain variables of the target lan-
guage. Interestingly, the naming conventions for the free variables in declarations described in
the previous section provide a book-keeping mechanism that establishes the correspondance be-
tween the target language variables and their declaration in Rules2CP. This is crucial to debug-
ging purposes and user-interaction. The correspondance between the target language constraints
and Rules2CP rules can be implemented similarly by keeping track of the Rules2CP rules that
generate constraints of the target language by inlining rules.

The examples of inlining rules given in this section are for the compilation of Rules2CP to
SICStus-Prolog [9]. Basic constraints are rewritten with term rewriting rules such as the follow-
ing ones:

• domain(E,M,N) →csp "domain(L,M,N)" if M and N are integers and where L is the
list of variables remaining in E after rewriting

• A > B →csp "‘A #> ‘B"

• A and B →csp "‘A #/\ ‘B"

• lexicographic(L)→csp "lex_chain(‘L)"

where backquotes in strings indicate subexpressions to rewrite. Obviously, such inlining rules
generate programs of linear size.

The inlining rules for Rules2CP search predicates are more complicated as they need to create
the list of the variables contained in an expression, and to sort the constraints, search predicates
and optimization criteria in conjunctions. For example, the inlining rule schema for single crite-
rion optimization is the following:

• A and minimize(C)→csp "‘B,minimize((‘D,labeling([up],‘L)),‘C)"

Net-WMS D6.1 page 30 of 83

Net-WMS FP6-034691

where L is the list of variables occurring in the cost expression C, D is the goal associated to
the labeling and search expressions occurring in A with disjunctions replaced by choice points,
and B is the translation of formula A without its labeling and search expressions. Note that the
generated code by this inlining rule is again of linear size.

Example 3 The compilation of the N-queens problem in Example 1 generates the following
SICStus Prolog goal:

1 #=< Q_1 #/\ Q_1 #=< 4 #/\
1 #=< Q_2 #/\ Q_2 #=< 4 #/\
1 #=< Q_3 #/\ Q_3 #=< 4 #/\
1 #=< Q_4 #/\ Q_4 #=< 4 #/\
Q_1#\=Q_2 #/\ Q_1#\=1+Q_2 #/\ Q_1#\=-1+Q_2 #/\
Q_1#\=Q_3 #/\ Q_1#\=2+Q_3 #/\ Q_1#\=-2+Q_3 #/\
Q_1#\=Q_4 #/\ Q_1#\=3+Q_4 #/\ Q_1#\=-3+Q_4 #/\
Q_2#\=Q_3 #/\ Q_2#\=1+Q_3 #/\ Q_2#\=-1+Q_3 #/\
Q_2#\=Q_4 #/\ Q_2#\=2+Q_4 #/\ Q_2#\=-2+Q_4 #/\
Q_3#\=Q_4 #/\ Q_3#\=1+Q_4 #/\ Q_3#\=-1+Q_4,
labeling([bisect,up],[Q_1,Q_2,Q_3,Q_4]).

Note that the inequality constraints are properly posted on ordered pairs of queens and that
the other pairs of queens generated by the universal quantifiers have been eliminated at compile
time by partial evaluation.

Example 4 The result of compiling the disjunctive scheduling problem in Example 2 is the fol-
lowing:

T1 #>= 0 #/\ T6 #< 20 #/\
T1+1 #=< T2 #/\ T2+2 #=< T3 #/\ T3+3 #=< T6 #/\
T1+1 #=< T4 #/\ T4+4 #=< T5 #/\ T5+2 #=< T6,
minimize((((T2+2 #=< T5 ; T5+2 #=< T2),

(T4+4 #=< T3 ; T3+3 #=< T4)),
labeling([up],[T6])),T6).

The search predicate applied to a first-order formula has been transformed into an and-or
search tree, keeping the nesting of disjuncts without normalization. This is crucial to maintaining
a linear complexity for this transformation.

4.3.3 Confluence, Termination and Complexity

By forbidding multiple definitions, and restricting heads to contain only distinct variables as
arguments, the compilation rules can be shown to be confluent. This means that the rewriting
rules can be applied in any order, and generate the same constraint program on a given input
model.

Proposition 1 For any Rules2CP model, the compilation term rewriting system→csp is con-
fluent.

Proof 1 Let us show that the term rewriting system→csp is orthogonal, i.e. left-linear and non-
overlapping, which entails confluence [29].

Net-WMS D6.1 page 31 of 83

Net-WMS FP6-034691

First, the heads of the→csp rewrite rules associated to Rules2CP rules and declarations are
formed with one symbol and distinct variables as arguments, hence these rules are trivially left-
linear. Furthermore, multiple definitions of a head symbol are not allowed, and the renaming
of free variables in declarations is deterministic, hence these rules are non-overlapping and
constitute an orthogonal term rewriting system.

Second, all the other →csp rules for predefined predicates and for inlined builtins are non-
overlapping, since the symbol they rewrite can be rewritten with only one rewrite rule, and in
only one way. This is enforced both in the predefined predicates dealing with lists, by imposing
that their list arguments are expansed before rewriting, and in several inlining rules by imposing
the expansion of the arguments first. Furthermore, the rules for builtins are also left-linear. This
is clear in all cases except for the rules associated to binding operators for quantifiers and
aggregation, since the binding variable X appears in the expression e. However such a binding
variable X denotes substitution occurrences in e and no pattern matching is done on X . In
particular, no rewriting rule applies if X is not a variable. Therefore the associated→csp rule is
left-linear w.r.t. pattern matching. The term rewriting system→csp is thus orthogonal.

It is worth noticing that the preceding proof does not assume termination3. The property of
confluence of→csp compilation rules would thus hold as well for Rules2CP with recursive state-
ments. By forbidding recursion however, it is intuitively clear that the compilation term rewriting
system→csp terminates. Without loss of generality, let us assume that there is only one goal solve
defined by a rule.

Definition 1 Given a Rule2CP model M , let the definition rank ρ(s) of a symbol s be defined
inductively by:

• ρ(s) = 0 if s is not the head symbol of a declaration or rule in M ,

• ρ(s) = n + 1 if s is the head symbol of a declaration or rule in M , and n is the greatest
definition rank of the symbols in its right hand side.

The definition rank of M is the maximum definition rank of the symbols in M .

Proposition 2 For any Rules2CP model, the term rewriting system→csp is Noetherian.

Proof 2 Each →csp rewrite rule associated to Rules2CP declarations and rules strictly de-
creases the definition rank of the symbol it rewrites, and the other→csp rules do not increase the
ranks. As the multiset extension of a well-founded ordering is well-founded [24], this entails that
the→csp term rewriting system is Noetherian [31].

Termination proofs by multiset path ordering imply primitive recursive derivation lengths [21].
Having forbidden recursion in Rules2CP statements however, a better complexity bound on the
size of the generated program can be obtained:

Definition 2 Given a Rule2CP model M , the aggregate rank α(s) of a symbol s is defined in-
ductively by:

3When termination is assumed, the non-overlapping condition, or more generally the confluence of critical pairs
[31], suffices to prove confluence without left-linearity.

Net-WMS D6.1 page 32 of 83

Net-WMS FP6-034691

• α(s) = 0 if s is not the head symbol of a declaration or rule in M ,

• α(s) =max{n + α(s′) | R contains a nesting of n aggregate operators on an expression
containing symbol s′} if s is the head symbol of a declaration or rule in M with right hand
side R.

The aggregate rank of M is the maximum aggregate rank of the symbols in M .

There is no complexity bound on the size of the generated program if the model contains
list constructions of the form [M..N], where M and N can be the result of arbitrary arithmetic
calculations. Apart from this case however, the size of the generated program can be bounded as
follows:

Proposition 3 For any Rules2CP model M with a goal of size one, and containing no list
constructor of the form [varint..varint], the size of the generated program is less than
or equal to la ∗ br, where l is the maximum length of the lists occurring in M , a is the aggregate
rank of M . b is the maximum size of the declaration and rule bodies in M , and r is the definition
rank of M .

Proof 3 The proof is by induction on a.
In the base case, a = 0, there is no aggregate operator in M , and the size of the generated

program is bounded by r duplications of rule bodies, i.e. by br.
In the induction case, a > 0, let us first consider the size of the program generated without

rewriting the outermost occurrences of aggregate and quantifier operators. By induction, this
size is bounded by la−1 ∗ br. Now, the generated program can be duplicated at most l times by
the outermost aggregate operators, hence the total size is bounded by la ∗ br under this strategy.
By confluence Prop. 1, the generated program is independent of the strategy, hence the size of
the generated program is bounded by la ∗ br under any strategy.

Corollary 1 The time complexity for compiling a Rules2CP model is in O(la ∗ br).

In the N-queens problem with a board of fixed size l, like in Example 1 when replacing the
variable size board declaration by an explicit list [q(1),...,q(l)], the aggregate rank is 2.
The previous proposition tells us that the size of the generated program is in O(l2).

4.4 The Packing Knowledge Modelling Library PKML

In this section, we illustrate the expressive power of Rules2CP with the definition of a Pack-
ing Knowledge Modelling Library (PKML) that is developed within the Net-WMS project for
dealing with real size non-pure bin packing problems of the automotive and logistic industries.

4.4.1 Shapes and Objects

PKML refers to shapes in K-dimensional space with integer coordinates in ZK . A point in this
space is represented by the list of its K integer coordinates [i1,...,iK]. These coordinates
may be variables or fixed integer values.

PKML shapes are records containing a shape attribute, plus possibly other attributes for virtual
reality representation, weight, etc. The possible values for the shape attribute, and the comple-
mentary attributes, are the following ones:

Net-WMS D6.1 page 33 of 83

Net-WMS FP6-034691

s1={shape=box, size=[size1,size2,...,sizeK]}.
s2={shape=polytope, points=[p1,p2,...,pN]}.
s3={shape=assembly, objects=[o1,o2,...,oN])}.
s4={shape=alternative, shapes=[s1,s2,...,sN])}.

The first form specifies orthotopes in ZK , i.e. rectangular boxes with their sizes given in
the different dimensions. The second form specifies a K-dimensional convex polytope defined
as the convex hull of a given list of N points. Note that a box is a particular case of convex
polytope. The third form specifies a rigid assembly of objects, i.e. shapes given relative position,
as detailed in next section. The fourth form gives a shape name to a set of alternative shapes.
This is used for instance to represent the different shapes obtained by rotating a shape around the
different dimension axes, or according to a finite set of angles, or in a configuration problem for
expressing the choice between different objects. By considering assemblies of convex polytopes,
one can easily see that any polytope in ZK can be represented as a PKML shape.

Shapes come with some predefined functions and relations in PKML. For example, for box
shapes, the followings declarations with their size in a given dimension and their volume:

size(S,D)=nth(D,size(S)).
volume(S,Dim)= aggregate(D,Dim,*,1,size(S,D)).

A PKML object, such as a bin or an item, is a record containing a shape name attribute sid,
an origin point, plus some optional attributes such as weight, virtual reality representations or
others.

o1={sid=name, origin=[x1,...,xK]}
o2={sid=name, origin=[y1,...,yK], weight=30, ...}

We do not distinguish between items and bins features, as bins at one level can become items
at another level, like for instance in a multilevel bin packing problem for packing items into
cartons, cartons in pallets, and pallets into trucks. The origin of an object in one dimension, and
its end if it has a box shape, plus some obvious rules for weights, are predefined in PKML by:

origin(O,D) = nth(D, origin(O)).
length(S,D) = nth(D, size(S)).
end(O,D) = origin(O, D) + length(sid(O), D).
lighter(O1, O2) --> weight(O1) < weight(O2).
heavier(O1, O2) --> weight(O1) > weight(O2).

4.4.2 Placement Relations

PKML uses Allen’s interval relations [1] in one dimension, and the topological relations of the
Region Connection Calculus [28] in higher-dimensions, to express placement constraints. These
relations are predefined in the libraries given in Appendices A and B respectively. They are used
in PKML to define packing rules for pure bin packing and pure bin design problems, as well as
specific packing business rules for non pure problems taking into account other common sense
requirements or industrial expertise.

The part of the PKML library dealing with pure bin packing and bin design problems is
defined as follows:

non_overlapping(Items, Dims) -->
forall(O1, Items,

forall(O2, Items,
iid(O1) < iid(O2) implies

Net-WMS D6.1 page 34 of 83

Net-WMS FP6-034691

not overlap(O1, O2, Dims))).

containmentAE(Items, Bins, Dims) -->
forall(I, Items,

exists(B, Bins,
contains_touch_rcc(B,I,Dims))).

bin_packing(Items, Bins, Dims) -->
containmentAE(Items, Bins, Dims) and
non_overlapping(Items, Dims) and
labeling(Items).

distance(O1, O2, D) =
max(0, max(origin(O1, D), origin(O2, D))

- min(end(O1, D), end(O2, D))).

volume(O, Dims) =
product(map(D, Dims, size(O, D))).

containmentEA(Items, Bins, Dims) -->
exists(B, Bins,

forall(I, Items,
contains_touch_rcc(B,I,Dims))).

bin_design(Bin, Items, Dims) -->
containmentEA(Items, [Bin], Dims) and
labeling(Items) and
minimize(volume(Bin)).

The rules define respectively the non-overlapping of a list of items in a list of dimensions, the
containment of all items in bins, pure bin packing problems, and then for bin design, the volume
of a bin, the containment in some bin of all items, and pure bin design problems. The complete
PKML library including common sense rules dealing with the weight of objects and the surface
contact of stacked items, is given in Appendix C.

Example 5 Let us consider the following simple pure bin packing problem

s1 = {shape=box, size=[5,4,4]}.
s2 = {shape=box, size=[5,4,2]}.
s3 = {shape=box, size=[4,4,2]}.
o1 = {oid=1, sid=s1, origin=[0,0,0]}.
o2 = {oid=2, sid=s2, origin=[_,_,_]}.
o3 = {oid=3, sid=s3, origin=[_,_,_]}.
dimensions = [1,2,3].
bins = [o1].
items = [o2,o3].
? binpacking(items, bins, dimensions).

On this example, the compiler described in the previous section generates the following
SICStus-Prolog goal:

0#=<O2,
O2+5#=<5,

Net-WMS D6.1 page 35 of 83

Net-WMS FP6-034691

0#=<O2_2,
O2_2+4#=<4,
0#=<O2_3,
O2_3+2#=<4,
0#=<O3,
O3+4#=<5,
0#=<O3_2,
O3_2+4#=<4,
0#=<O3_3,
O3_3+2#=<4,
O2+5#=<O3#\/O3+4#=<O2#\/

(O2_2+4#=<O3_2#\/O3_2+4#=<O2_2#\/
(O2_3+2#=<O3_3#\/O3_3+2#=<O2_3)),

labeling([bisect,up],[O2,O2_2,O2_3,O3,O3_2,O3_3]).

4.4.3 Packing Business Rules and Patterns
Packing business rules are defined in Rules2CP to take into account further common sense or
industrial requirements that are beyond the scope of pure bin packing problems. For instance the
following rules about weights

gravity(Items) -->
forall(O1, Items,

origin(O1, 3) = 0 or
exists(O2, Items, iid(O1) # iid(O2) and on_top(O1, O2))).

weight_stacking(Items) -->
forall(O1, Items,

forall(O2, Items,
(iid(O1) # iid(O2) and on_top(O1, O2))
implies
lighter(O1,O2))).

weight_balancing(Items, Bin, D, Ratio) -->
let(L, sum(map(Il, Items, weight(Il)*(end(Il,D) =< (end(Bin,D)/2)))),
let(R, sum(map(Ir, Items, weight(Ir)*(end(Ir,D) >= (end(Bin,D)/2)))),
100*max(L,R) =< (100+Ratio)*min(L,R))).

express particular constraints on the weights of the items in an admissible packing. Such packing
business rules can be simply added to PKML models. These rules about weights are predefined
(see Appendix C).

Furthermore, business patterns can be used in PKML to express knowledge about some pre-
defined solutions to packing problems. Such patterns are used in the industry, for instance for
filling pallets, or trucks, with maximum stability according to some predefined solutions. In
PKML, packing patterns are records containing a list of item shapes given with the coordinates
of their origin:

pat1={sids=[s1,...,sN], origins=[p1,...,pN]}.

pattern(Items, Bin, Patterns)
-->

Net-WMS D6.1 page 36 of 83

Net-WMS FP6-034691

exists(P, Patterns,
forall(S, sids(P), let(J, pos(S,sids(P),
exists(I, Items,
S=sid(I) and origin(I)=nth(J,origins))).

The packing pattern rule places items in a bin according to some pattern taken from a list
of patterns. This rule can be used in packing problems by first trying to apply a pattern, and
completing the packing with the general bin packing rule as follows:

? search(pattern(items, bin, patterns))
and bin_packing(items,[bin],[1 .. d]).

4.4.4 Compilation to the Global Constraint geost

The constraint geost [4] is a generic global constraint for higher-dimensional placement prob-
lems which is now parameterized by a rule language described in Chapter 6. A subset of PKML
rules can be directly transformed into geost rules providing a very high level of pruning and
remarkable efficiency.

This subset of PKML uses records for objects and shapes only, and is retricted to linear arith-
metic expressions, i.e. linear combinations of domain variables excluding for instance the pre-
vious volume function used in bin design problems. With these restrictions, geost rules can
be compiled into k-indexicals, i.e. functions that compute forbidden sets of object points repre-
sented as collections of k-dimensional boxes composed by unions and intersections.

The compilation of a PKML model into a constraint satisfaction problem with the geost
with rules global constraint, mainly consists in:

• extracting the definitions of objects and shapes from PKML statements in order to provide
them to the geost constraint,

• sorting the declarations and rules that refer to objects and shapes and satisfy the linearity
condition, for providing them to the geost constraint,

• compiling the PKML goals into the geost constraint with integrated rules plus additional
constraint programming code, as described in the previous section, for the other rules and
search predicates that are not accepted by the integrated rule language of geost.

This compilation scheme can be refined by adding extra dimensions, for instance for handling
multiple bins packing problems by adding an extra dimension for bin assignment where each
item has size one, or for handling scheduling aspects by adding an extra dimension for time, etc.
as described in Chapter 6.

4.5 Related Work

4.5.1 Comparison to Business Rules

Rules2CP is an attempt to use the business rules knowledge representation paradigm for con-
straint programming. Business rules are very popular in the industry because they provide a
declarative mean for expressing expertise knowledge. Business rules should describe indepen-
dent pieces of knowledge, and should be independent from a particular procedural interpretation,

Net-WMS D6.1 page 37 of 83

Net-WMS FP6-034691

such as by a rule engine [17]. Rules2CP realizes this aim in the context of combinatorial opti-
mization problems, by tranforming business rules into efficient programs using a completely
different representation. Rules2CP rules are not general condition-action rules, also called pro-
duction rules in the expert system community, but logical rules with only one head and no im-
perative actions. Bounded quantifiers are used to represent complex conditions. Such conditions
can also be expressed in many production rules systems, but here they are used at compile-time
to setup a constraint satisfaction problem, instead of at run-time to match patterns in a database
of facts. As a rule-based modelling language, Rules2CP thus complies to the business rules man-
ifesto [17].

4.5.2 Comparison to OPL and Zinc

Rules2CP differs from OPL [33] and Zinc [27, 12] modelling languages in several aspects among
which: the restriction in Rules2CP to simple data structures of records and enumerated lists,
the absence of recursion and the absence of solver specific annotations. This trade-off for ease
of use was motivated by our search for a declarative modelling language with no complicated
programming constructs. We have shown that the declarations and rules of Rules2CP allow the
user to name data and knowledge rules without complicated variable scopes. A simple module
system is used in Rules2CP to avoid name clashes.

Furthermore, we have shown that non trivial search strategies can be declaratively expressed
in Rules2CP, by specifying decision variables and branching formulas. The generated constraint
programs are reasonably efficient, thanks to the compilation scheme which uses partial evalua-
tion in the rewriting process to eliminate the overhead due to the simplicity of data and control
structures. Interestingly, the generated program may be more efficient than constraint programs
written by non-expert users, when the compiler uses the global constraints of the target language
as illustrated for packing problems with the PKML library and the geost constraint.

On the other hand, we have not considered the compilation of Rules2CP to other solvers such
as local search, or mixed integer linear programs, as has been done for OPL and Zinc systems.

4.5.3 Comparison to Constraint Logic Programming

As a modelling language, Rules2CP is a constraint logic programming language, but not in the
formal sense of the CLP scheme of Jaffar and Lassez [23]. Rules2CP models can be compiled to
CLP(FD) programs in a straightforward way by translating Rules2CP rules into Prolog clauses,
and by keeping the→csp rewriting for the remaining expressions. Note that the converse transla-
tion of Prolog programs into Rules2CP models is not possible (apart from an arithmetic encod-
ing) due to the absence of recursion and of general list constructors in Rules2CP.

Unlike the local scope mechanism used for the free variables in CLP rules, a global scope
mechanism in used for the free variables in Rules2CP declarations. This global scope mechanism
has no counterpart in the CLP scheme where it is often necessary to pass the list of all variables
as arguments to CLP predicates4. On the other hand, free variables are not allowed in the right
hand side of Rules2CP rules.

4For that reason, global variables have also been introduced as extra logical features in many CLP systems.

Net-WMS D6.1 page 38 of 83

Net-WMS FP6-034691

4.5.4 Comparison to Term Rewriting Systems Tools and Compilation to Con-
straint Solvers in Java

The compilation of Rules2CP models to constraint programs is defined and implemented by a
term rewriting system. The properties of confluence and termination of this process have been
shown using term rewriting theory.

There are several term rewriting system tools available that could be used directly for the im-
plementation of the Rules2CP compiler. For instance, in the context of target constraint solvers in
Java, such as Choco, and for Java programming environments in which Rules2CP data structures
may be defined by Java objects, the term rewriting system TOM [3] provides a pattern matching
compiler for programming term transformations defined by rules. This would make of TOM an
ideal system for implementing a Rules2CP compiler to Java, through a direct translation of→csp

rules into TOM rules.

4.6 Conclusion

The Rules2CP language is a rule-based modelling language for constraint programming. It has
been designed to allow non-programmers express industrial requirements about combinatorial
optimization problems with business rules (using appropriate editors). In compliance to the busi-
ness rules manifesto [17], Rules2CP rules are declarative, independent from each other, and not
necessarily executed by a rule engine. We have shown that Rules2CP models can be compiled to
constraint programs using term rewriting and partial evaluation. We have shown the confluence
of these transformations and provided a bound on the size of the generated program.

The obtention of such a complexity result reflects the simplicity of our design choices for
Rules2CP, such as the absence of recursion and of general list constructor for instance. The
expressivity of Rules2CP has nevertheless been illustrated with a complete library for packing
problems, called PKML, which, in addition to pure bin packing and bin design problems, can
deal with extra constraints about weights, oversizes, equilibrium constraints, and specific packing
business rules. Furthermore, a substantial part of PKML rules can be very efficiently compiled
within the geometric global constraint geost, as described in Chapter 6.

Search strategies can also be specified declaratively in Rules2CP, together with some prede-
fined heuristics. We are however currently exploring the full power of Rules2CP for modelling
heuristic knowledge with more flexibility than what we have achieved so far.

4.7 Appendix A: Allen’s Interval Relations Library

The library of Allen’s interval relations [1] is predefined in Rules2CP by the following file
allen.rcp:

o r i g i n (O, D) = n t h (D, o r i g i n (O)) .

s i z e (S , D) = n t h (D, s i z e (S)) .

end (O, D) = o r i g i n (O, D) + s i z e (shape (O) , D) .

p r e c e d e s (A, B , D) −−>
end (A, D) < o r i g i n (B , D) .

Net-WMS D6.1 page 39 of 83

Net-WMS FP6-034691

meets (A, B , D) −−>
end (A, D) = o r i g i n (B , D) .

o v e r l a p s (A, B , D) −−>
o r i g i n (A, D) < o r i g i n (B , D) and
end (A, D) < end (B , D) and
o r i g i n (B , D) < end (A, D) .

c o n t a i n s (A, B , D) −−>
o r i g i n (A, D) < o r i g i n (B , D) and
end (B , D) < end (A, D) .

s t a r t s (A, B , D) −−>
o r i g i n (A, D) = o r i g i n (B , D) and
end (A, D) < end (B , D) .

f i n i s h e s (A, B , D) −−>
o r i g i n (B , D) < o r i g i n (A, D) and
end (A, D) = end (B , D) .

e q u a l s (A, B , D) −−>
o r i g i n (A, D) = o r i g i n (B , D) and
end (A, D) = end (B , D) .

s t a r t e d b y (A, B , D) −−>
o r i g i n (A, D) = o r i g i n (B , D) and
end (B , D) < end (A, D) .

f i n i s h e d b y (A, B , D) −−>
o r i g i n (B , D) > o r i g i n (A, D) and
end (A, D) = end (B , D) .

d u r i n g (A, B , D) −−>
o r i g i n (B , D) < o r i g i n (A, D) and
end (A, D) < end (B , D) .

o v e r l a p p e d b y (A, B , D) −−>
o r i g i n (B , D) < o r i g i n (A, D) and
o r i g i n (A, D) < end (B , D) and
end (A, D) > end (B , D) .

met by (A, B , D) −−>
end (B , D) = o r i g i n (A, D) .

p r e c e d e d b y (A, B , D) −−>
end (B , D) < o r i g i n (A, D) .

c o n t a i n s t o u c h (A, B , D) −−>
o r i g i n (A, D) =< o r i g i n (B , D) and
end (B , D) =< end (A, D) .

Net-WMS D6.1 page 40 of 83

Net-WMS FP6-034691

o v e r l a p s s y m (A, B , D) −−>
end (A, D) > o r i g i n (B , D) and

end (B , D) > o r i g i n (A, D) .

The predicate contains touch and overlaps sym have been added to Allen’s relations.
These relations can be defined by disjunctions with standard Allen’s relations but their direct
definition with non strict inequalities is added here for efficiency reasons.

4.8 Appendix B: Region Connection Calculus Library

The library of topological relations of the Region Connection Calculus [28] is predefined in
Rules2CP in higher-dimensions by the following file rcc8.rcp:

i m p o r t (a l l e n) .

d i s j o i n t (O1 , O2 , Ds) −−>
e x i s t s (D, Ds ,

p r e c e d e s (O1 , O2 , D) o r
p r e c e d e d b y (O1 , O2 , D)) .

meet (O1 , O2 , Ds) −−>
f o r a l l (D, Ds ,

n o t p r e c e d e s (O1 , O2 , D) and
n o t p r e c e d e d b y (O1 , O2 , D)) and

e x i s t s (D, Ds ,
meets (O1 , O2 , D) o r
met by (O1 , O2 , D)) .

e q u a l (O1 , O2 , Ds) −−>
f o r a l l (D, Ds , e q u a l s (O1 , O2 , D)) .

c o v e r s (O1 , O2 , Ds) −−>
f o r a l l (D, Ds ,

s t a r t e d b y (O1 , O2 , D) o r
c o n t a i n s (O1 , O2 , D) o r
f i n i s h e d b y (O1 , O2 , D)) and

e x i s t s (D, Ds , n o t c o n t a i n s (O1 , O2 , D)) .

c o v e r e d b y (O1 , O2 , Ds) −−>
f o r a l l (D, Ds ,

s t a r t s (O1 , O2 , D) o r
d u r i n g (O1 , O2 , D) o r
f i n i s h e s (O1 , O2 , D)) and

e x i s t s (D, Ds , n o t d u r i n g (O1 , O2 , D)) .

c o n t a i n s r c c (O1 , O2 , Ds) −−>
f o r a l l (D, Ds ,

c o n t a i n s (O1 , O2 , D)) .

i n s i d e (O1 , O2 , Ds) −−>
f o r a l l (D, Ds ,

d u r i n g (O1 , O2 , D)) .

Net-WMS D6.1 page 41 of 83

Net-WMS FP6-034691

o v e r l a p (O1 , O2 , Ds) −−>
f o r a l l (D, Ds ,

o v e r l a p s s y m (O1 , O2 , D)) .

c o n t a i n s t o u c h r c c (O1 , O2 , Ds) −−>
f o r a l l (D, Ds ,

c o n t a i n s t o u c h (O1 , O2 , D)) .

The rule contains touch rcc has been added to the standard region calculus connection
relations for convenience and efficiency reasons similar to the extension done to Allen’s relations.

4.9 Appendix C: PKML Library

The PKML library is defined in Rules2CP by the following file pkml.rcp:

i m p o r t (r c p) .
i m p o r t (r c c 8) .
i m p o r t (p k m l s u r f a c e) .
i m p o r t (pkml we igh t) .

n o n o v e r l a p p i n g (I tems , Dims) −−>
f o r a l l (O1 , I tems ,

f o r a l l (O2 , I tems ,
i i d (O1) < i i d (O2) i m p l i e s
n o t o v e r l a p (O1 , O2 , Dims))) .

conta inmentAE (I tems , Bins , Dims) −−>
f o r a l l (I , I t ems ,

e x i s t s (B , Bins ,
c o n t a i n s t o u c h r c c (B , I , Dims))) .

b i n p a c k i n g (I tems , Bins , Dims) −−>
conta inmentAE (I tems , Bins , Dims) and
n o n o v e r l a p p i n g (I tems , Dims) and
l a b e l i n g (I t e m s) .

d i s t a n c e (O1 , O2 , D) =
max (0 , max (o r i g i n (O1 , D) , o r i g i n (O2 , D))

− min (end (O1 , D) , end (O2 , D))) .

volume (O, Dims) =
p r o d u c t (map (D, Dims , s i z e (O, D))) .

conta inmentEA (I tems , Bins , Dims) −−>
e x i s t s (B , Bins ,

f o r a l l (I , I t ems ,
c o n t a i n s t o u c h r c c (B , I , Dims))) .

b i n d e s i g n (Bin , I tems , Dims) −−>
conta inmentEA (I tems , [Bin] , Dims) and
l a b e l i n g (I t e m s) and

Net-WMS D6.1 page 42 of 83

Net-WMS FP6-034691

min imize (volume (Bin)) .

These rules allow us to express pure bin packing and pure bin design problems. The file
pkml weight.rcp defines some additional common sense rules of packing taking into ac-
count the weight of items:

l i g h t e r (O1 , O2) −−>
we ig h t (O1) =< we ig h t (O2) .

h e a v i e r (O1 , O2) −−>
we ig h t (O1) >= we ig h t (O2) .

g r a v i t y (I t e m s) −−>
f o r a l l (O1 , I tems ,

o r i g i n (O1 , 3) = 0 or
e x i s t s (O2 , I tems , i i d (O1) # i i d (O2) and o n t o p (O1 , O2))) .

w e i g h t s t a c k i n g (I t e m s) −−>
f o r a l l (O1 , I tems ,

f o r a l l (O2 , I tems ,
(i i d (O1) # i i d (O2) and o n t o p (O1 , O2))
i m p l i e s
l i g h t e r (O1 , O2))) .

w e i g h t b a l a n c i n g (I tems , Bin , D, R a t i o) −−>
l e t (L , sum (map (I l , I t ems , we igh t (I l) ∗ (end (I l ,D) =< (end (Bin ,D) / 2)))) ,

l e t (R , sum (map (I r , I t ems , we igh t (I r) ∗ (end (I r ,D) >= (end (Bin ,D) / 2)))) ,
100∗max (L , R) =< (100+ R a t i o)∗min (L , R))) .

The file pkml surface.rcp defines some additional rules for taking into account the sur-
face of contact between stacked items:

o n t o p (O1 , O2) −−>
o v e r l a p (O1 , O2 , [1 , 2]) and
met by (O1 , O2 , 3) .

o v e r s i z e (O1 , O2 , D) =
max (max (o r i g i n (O1 , D) , o r i g i n (O2 , D))

− min (o r i g i n (O1 , D) , o r i g i n (O2 , D)) ,
max (end (O1 , D) , end (O2 , D))

− min (end (O1 , D) , end (O2 , D))) .

s t a c k o v e r s i z e (I tems , Length) −−>
f o r a l l (O1 , I tems ,

f o r a l l (O2 , I tems ,
(o v e r l a p (O1 , O2 , [1 , 2]) and i i d (O1) # i i d (O2))
i m p l i e s
f o r a l l (D, [1 , 2] , o v e r s i z e (O1 , O2 , D) < Length))) .

4.10 Appendix D: Small Example with Weights

A small example involving packing business rules takinginto account the weight of objects and
coming from the automotive industry at Peugeot Citron PSA, is defined in the following file

Net-WMS D6.1 page 43 of 83

Net-WMS FP6-034691

psa.rcp:

i m p o r t (pkml) .

p s a b i n p a c k i n g (I tems , Bin , Dims) −−>
g r a v i t y (I t e m s) and
w e i g h t s t a c k i n g (I t e m s) and
w e i g h t b a l a n c i n g (I tems , Bin , 1 , 20) and
s t a c k o v e r s i z e (I tems , 10) and
b i n p a c k i n g (I tems , [Bin] , Dims) .

s1 = { s i d =1 , s i z e =[1203 , 235 , 2 3 9]} .
s2 = { s i d =2 , s i z e =[224 , 224 , 2 2 2]} .
s3 = { s i d =3 , s i z e =[224 , 224 , 1 4 8]} .
s4 = { s i d =4 , s i z e =[224 , 224 , 1 1 1]} .
s5 = { s i d =5 , s i z e =[224 , 224 , 7 4] } .
s6 = { s i d =6 , s i z e =[155 , 224 , 2 2 2]} .
s7 = { s i d =7 , s i z e =[112 , 224 , 1 4 8]} .

i 1 = { i i d =1 , shape =s1 , o r i g i n = [0 , 0 , 0] } .
i 2 = { i i d =2 , shape =s4 , o r i g i n =[, ,] , w e i gh t =413} .
i 3 = { i i d =3 , shape =s5 , o r i g i n =[, ,] , w e i gh t =463} .
i 4 = { i i d =4 , shape =s5 , o r i g i n =[, ,] , w e i gh t =842} .
i 5 = { i i d =5 , shape =s3 , o r i g i n =[, ,] , w e i gh t =422} .
i 6 = { i i d =6 , shape =s4 , o r i g i n =[, ,] , w e i gh t =266} .
i 7 = { i i d =7 , shape =s4 , o r i g i n =[, ,] , w e i gh t =321} .
i 8 = { i i d =8 , shape =s2 , o r i g i n =[, ,] , w e i gh t =670} .
i 9 = { i i d =9 , shape =s6 , o r i g i n =[, ,] , w e i gh t =440} .
i 1 0 = { i i d =10 , shape =s7 , o r i g i n =[, ,] , w e i gh t =325} .

b i n = i 1 .
i t e m s = [i2 , i 3] .
d i m e n s i o n s = [1 , 2 , 3] .

? p s a b i n p a c k i n g (i t ems , bin , d i m e n s i o n s) .

The generated code in SICStus-Prolog on this small example is the following:

:− use modu le (l i b r a r y (c l p f d)) .

s o l v e ([I2 , I2 2 , I2 3 , I3 , I3 2 , I 3 3]) :−
R 54#<=>I2 +224#= <1203/2 ,
R 55#<=>I3 +224#= <1203/2 ,
R 56#<=>I2 +224# >=1203/2 ,
R 57#<=>I3 +224# >=1203/2 ,
R 58#<=>I2 +224#= <1203/2 ,
R 59#<=>I3 +224#= <1203/2 ,
R 60#<=>I2 +224# >=1203/2 ,
R 61#<=>I3 +224# >=1203/2 ,

I 2 3 #=0#\ / I 2 +224#> I3 # /\ I3 +224#> I2 # /\
(I 2 2 +224#> I 3 2 # /\ I 3 2 +224#> I 2 2) # / \ I 3 3 +74#= I2 3 ,

I 3 3 #=0#\ / I 3 +224#> I2 # /\ I2 +224#> I3 # /\
(I 3 2 +224#> I 2 2 # /\ I 2 2 +224#> I 3 2) # / \ I 2 3 +111#= I3 3 ,

Net-WMS D6.1 page 44 of 83

Net-WMS FP6-034691

I3 +224#=< I2 #\ / I 2 +224#=< I3 #\ /
(I 3 2 +224#=< I 2 2 #\ / I 2 2 +224#=< I 3 2) # \ / I 2 3 +111#\= I3 3 ,

100∗max (413∗R 54 +(463∗R 55 +0) ,413∗R 56 +(463∗R 57 +0))#=<
120∗min (413∗R 58 +(463∗R 59 +0) ,413∗R 60 +(463∗R 61 + 0)) ,

I2 +224#=< I3 #\ / I 3 +224#=< I2 # \ / (I 2 2 +224#=< I 3 2 #\ / I 3 2 +224#=< I 2 2) # \ /
max (max (I2 , I3)−min (I2 , I3) ,

max (I2 +224 , I3 +224)−min (I2 +224 , I3 +224))# <10#/\
max (max (I2 2 , I 3 2)−min (I2 2 , I 3 2) ,

max (I 2 2 +224 , I 3 2 +224)−min (I 2 2 +224 , I 3 2 +224))# <10 ,

I3 +224#=< I2 #\ / I 2 +224#=< I3 #\ /
(I 3 2 +224#=< I 2 2 #\ / I 2 2 +224#=< I 3 2) # \ /
max (max (I3 , I2)−min (I3 , I2) ,

max (I3 +224 , I2 +224)−min (I3 +224 , I2 +224))# <10#/\
max (max (I3 2 , I 2 2)−min (I3 2 , I 2 2) ,

max (I 3 2 +224 , I 2 2 +224)−min (I 3 2 +224 , I 2 2 +224))# <10 ,

0#=< I2 ,
I2 +224#=<1203 ,
0#=< I2 2 ,
I 2 2 +224#=<235 ,
0#=< I2 3 ,
I 2 3 +111#=<239 ,
0#=< I3 ,
I3 +224#=<1203 ,
0#=< I3 2 ,
I 3 2 +224#=<235 ,
0#=< I3 3 ,
I 3 3 +74#=<239 ,

I2 +224#=< I3 #\ / I 3 +224#=< I2 # \ / (I 2 2 +224#=< I 3 2 #\ / I 3 2 +224#=< I 2 2 #\ /
(I 2 3 +111#=< I 3 3 #\ / I 3 3 +74#=< I 2 3)) ,

l a b e l i n g ([b i s e c t , up] , [I2 , I2 2 , I2 3 , I3 , I3 2 , I 3 3]) .

Net-WMS D6.1 page 45 of 83

Net-WMS FP6-034691

Net-WMS D6.1 page 46 of 83

Chapter 5

Extra Features of PKML for Virtual
Reality

The Virtual Reality components intend to find solutions to the packing problem that are not
devisable with the optimisation solvers. Thus, it will need parameters that are geometrically
more accurate to be added in the definition of objects and shapes. This involves two parameters
in the objects and one in the shapes.

5.1 Object Parameters

5.1.1 vr shape

In graphical representation and physical simulation, the Virtual Reality module processes the
exact geometry of the handled objects and not only their enveloping boxes. For that purpose, a
vr shape attribute is added to the PKML Objects.

This attribute is a string consisting in XML code that represents the accurate geometry of the
considered object:

<GraphicalRepresentation>
<ObjRepresentation Name="knob_freeze_9_C0_T_3DXMLREFID_9">
<Faces Triangles="0 2 1 3 2 0 4 2 3 5 2 4 6 2 5 6 7 2 7 8 2 2 8 9 ..."/>
<Vertex>
<Positions>-0.017092 -0.007080 0.017366 -0.018500</Positions>

</Vertex>
</ObjRepresentation>

</GraphicalRepresentation>

Where:

• Name is the name of the object.

• Positions represent the position of all vertices;
order: vertex0.x vertex0.y vertex0.z vertex1.x ...

• Triangles represent the faces of the object;
order: triangle0(index of vertex 0, index of vertex 1, index of vertex 2)

triangle1 ...;
for example, 0 2 1 3 2 0 means:

47

Net-WMS FP6-034691

– triangle 0 is made of vertex 0, 2 and 1,

– triangle 1 is made of vertex 3, 2 and 0.

This is actually a simplified version of the “.obj” format:
http://www.royriggs.com/obj.html.

5.1.2 vr displacement

Due to the fact that the Virtual Reality component consider object positions as real numbers
rather than integers, an attribute vr displacement that represents the real position of an object in
space is added to the PKML description of this object. It consists in a string of 7 real numbers
specifying a position (x, y, z) and a rotation (in the form of a quaternion). This parameter will
need to be updated after each use of the solvers.

5.2 Shape Parameters

5.2.1 vr rotation

Since an object may be associated with multiple alternative PKML shapes corresponding to the
unique real shape of this object but with different rotations, it is required to explicitly indicate
these rotations so as to simplify the updating of an object position after it has been processed by
the solvers. For this purpose, we define a vr rotation attribute consisting in a string that specifies
the quaternion transforming the original into this alternative shape.

Example:

s1 = {shape=box, size=[1,2,3], vr_rotation= "0 0 0 1" }.
s2 = {shape=box, size=[1,3,2], vr_rotation= "0.707 0 0 0.707"}.
s3 = {shape=box, size=[3,2,1], vr_rotation= "0 0.707 0 0.707"}.
s4 = {shape=alternative, shapes=[s1, s2, s3]}.
o1 = {sid=s4, origin=[_,_,_], vr_displacement = "0 0 0 0 0 0 1"}

In the Virtual Reality context, we do not allow an object to be made of alternative shapes
that do not represent the same shape up to a rotation. This is allowed in PKML and geost for
handling for instance configuration problems where the different shapes correspond to different
design choices.

5.3 Additional parameters for physical simulations

It is foreseen that physical simulation may require additional parameters (possibly dry friction
parameters, deformation parameters, ...) that cannot be completely defined at this stage. Thanks
to the extensibility of PKML records, these will be added later without particular difficulties.
They will be specified in subsequent releases of the current document.

Net-WMS D6.1 page 48 of 83

Chapter 6

A Geometric Constraint over
k-Dimensional Objects and Shapes
Subject to Business Rules

6.1 Introduction

This chapter extends a global constraint geost(k,O,S,R) for handling the location in space of
k-dimensional objects O (k ∈ N+), each of which taking a shape among a set of shapes S,
subject to rulesR in a language which is essentially a subset of PKML.

In order to model directly a lot of side constraints, which always show up in the context
of real-life applications, many global constraints have traditionally been extended with extra
options or arguments. This is why, in a closely related area, the diffn constraint of CHIP provides,
beside non-overlapping, a variety of other geometrical constraints (in fact more than 10 side
constraints). This was also the case for the cycle and tree constraints [5, 6] where, beside a basic
graph partitioning constraint, a variety of useful side constraints were also provided. Even if this
makes sense when one wants to efficiently solve specific real-life applications, this proliferation
of arguments and options has two major drawbacks:

• Having a lot of ad-hoc side constraints is too specific and is sometimes quite frustrating
since it does not allow to express a small variant of an existing side constraint.

• Designing a filtering algorithm for each side constraint independently is not enough and
managing the interaction of several side constraints becomes more and more challenging
as the number and variety of side constraints increase.

The approach presented in this chapter addresses these two issues in the following way:

• Firstly, having a rule language for expressing side constraints is obviously more flexible
than having a large set of predefined side constraints.

• Secondly, as we will see later on, our filtering allows to directly take into account the
interaction between all rules.

The geost constraint can thus be seen as a natural target constraint of the PKML modeling
language. In geost(k,O,S,R), each shape from S is defined as a finite set of shifted boxes,

49

Net-WMS FP6-034691

where each shifted box is described by a box in a k-dimensional space at the given offset with
the given sizes. More precisely a shifted box s ∈ S is an entity defined by its shape id s.sid , shift
offset s.t[d], 1 ≤ d ≤ k, and sizes s.l[d] (s.l[d] > 0, 1 ≤ d ≤ k). All attributes of a shifted box
are integer values. Then, a shape is a collection of shifted boxes all sharing the same shape id.1

Each object o ∈ O is an entity defined by its unique object id o.oid (an integer), shape id o.sid
(an integer if the object has a fixed shape, or a domain variable for polymorphic objects, which
have alternative shapes), and origin o.x[d], 1 ≤ d ≤ k (integers, or domain variables that do
not occur anywhere else in the constraint).2 Objects and shifted boxes may also have additional,
integer (but see also Section 6.7) attributes, such as weight, customer, or fragility, used by the
rules.

Each rule inR is a first-order logical formula over the attributes of objects and shifted boxes.
From the point of view of domain filtering, the main contribution of this chapter is that mul-
ti-dimensional forbidden sets can be automatically derived from such formulas and used by the
sweep-based algorithm of geost [4].3 This contrasts with the previous version of geost, where an
ad-hoc algorithm computing the multi-dimensional forbidden sets had to be worked out for each
side constraint. R may also contain macros, providing abbreviations for expressions occurring
in formulas or in other macros.

The rule language. The language that makes up the rules to be enforced by the geost con-
straint is based on first-order logic with arithmetic, as well as several features including macros,
bounded quantifiers, folding and aggregation operators. We will show how all but a core fragment
of the language can be eliminated by equivalence-preserving rewriting. The remaining fragment
is a subset of Quantifier-Free Presburger Arithmetic (QFPA), which has a very simple semantics
and is amenable to efficient compilation.

Constraint satisfaction problems using quantified formulas (QCSP) have been, for instance,
studied by Benedetti et al. [7], mostly in the context of modeling games. QCSP does not provide
disjunction but actively uses quantifiers in the evaluation, whereas we eliminate all quantifiers in
the process of rewriting to QFPA.

Example 6 This running example will be used to illustrate the way we compile rules to code
used by the sweep-based algorithm [4] for filtering the nonground attributes of each object.
Suppose that we have five objects o1, o2, o3, o4 and o5 such that:

• o1, o2 and o4 correspond to fixed rectangles of respective size 3× 1, 1× 1 and 3× 1.

• The coordinates of o3 are fixed but not its shape variable s3, which can take values 3 or 4
(i.e., we can choose among two shapes for object o3). We will denote by `31 resp. `32 the
length resp. height of o3.

• The coordinates of the non-fixed square o5 of size 2 × 2 correspond to the two variables
x51 ∈ [1, 9] and x52 ∈ [1, 6].

1Note that the shifted boxes associated with a given shape may or may not overlap. This sometimes allows a
drastic reduction in the number of shifted boxes needed to describe a shape.

2A domain variable v is a variable ranging over a finite set of integers denoted by dom(v); v and v denote
respectively the minimum and maximum possible values for v.

3The sweep-based algorithm performs recursive traversals of the placement space for each coordinate increasing
as well as decreasing lexicographic order and skips unfeasible points that are located in a multi-dimensional forbidden
set.

Net-WMS D6.1 page 50 of 83

Net-WMS FP6-034691

• o2, o4 and o5 have the additional attribute type with value 1 whereas o1 and o3 have type
with value 2.

• Two rules must be obeyed:

– All objects should be mutually non-overlapping (see Fig. 6.11).

– If the type attribute of two objects both equal 1, the two objects should not meet (see
Fig. 6.11 again).4

The full details and geost encoding of the example are shown in Fig. 6.1; for an explanation
of the notation, see Section 6.2 and Table 6.4.

Declarative semantics. As usual, the semantics is given in terms of ground objects. The con-
straint geost(k,O,S,R) holds if and only if the conjunction of the logical formulas in R is
true.

Implementation overview. Fig. 6.2 provides the overall architecture of the implementation.
When the geost constraint is posted, the given business rules are translated, first into QFPA, then
into generators of k-dimensional forbidden sets. Such generators, k-indexicals, are a generaliza-
tion of the indexicals of cc(FD) [32]. Each time the constraint wakes up, the sweep-based algo-
rithm [4] generates forbidden sets for a specific object o by invoking the relevant k-indexicals,
then looks for points that are not contained in any forbidden set in order to prune the nonground
attributes of o.

Chapter outline. In Section 6.2, we present the rule language, its abstract syntax and its fea-
tures. In Section 6.3, we present the QFPA core fragment of the language, its declarative seman-
tics, and how the rule language is rewritten into QFPA. In Section 6.4, we describe (1) how a
QFPA formula is compiled to generators of k-dimensional forbidden sets, and (2) how the for-
bidden sets generated by such generators are aggregated by a sweep-based algorithm and used
for filtering. In Section 6.5, we extend the filtering to accommodate polymorphic objects. In Sec-
tion 6.7, we conclude and mention a number of issues that we are currently working on. In the
Appendix, we show the Prolog representation of the various language elements that we actually
use in the implementation. The Appendix also shows how the Region Connection Calculus may
be expressed in our language, as well as rules encoding a problem instance provided by a major
car manufacturer and rules encoding a packing-unpacking problem.

The syntax descriptions are kept abstract, with inductive definitions of legal terms instead of
BNF grammars of legal sentences. The inductive definitions do use BNF-like notation.

6.2 The Rule Language: Syntax and Features

Fig. 6.3 shows the inductive definition of the rule language. A macro is simply a shorthand
device: during a rewriting phase, whenever an expression matching the left-hand side of a macro
is encountered, it is replaced by the corresponding right-hand side. A fol is a first-order logic

4Two rectangles meet also if their corners meet.

Net-WMS D6.1 page 51 of 83

Net-WMS FP6-034691

example(S3, X51, X52) :-
% PROBLEM VARIABLES
S3 in 3..4, X51 in 1..9, X52 in 1..6,
geost(% OBJECTS TO PLACE

[object(oid-1, sid-1,x-[1, 2],type-2),
object(oid-2, sid-2,x-[3, 3],type-1),
object(oid-3,sid-S3,x-[2, 5],type-2),
object(oid-4, sid-1,x-[3, 7],type-1),
object(oid-5, sid-5,x-[X51,X52],type-1)],
% SHAPES THAT CAN BE ASSIGNED TO OBJECTS
[sbox(sid-1,t-[0,0],l-[3,1]),
sbox(sid-2,t-[0,0],l-[1,1]),
sbox(sid-3,t-[0,0],l-[1,2]),
sbox(sid-4,t-[0,0],l-[2,1]),
sbox(sid-5,t-[0,0],l-[2,2])],
[% MACROS DEFINING FUNCTIONS (DERIVED ATTRIBUTES)
(origin(O1,S1,D) ---> O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D) ---> O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
% MACROS DEFINING PAIRWISE TOPOLOGICAL RELATIONS
(overlap_sboxes(Dims, O1, S1, O2, S2) --->

forall(D, Dims,
end(O1,S1,D) #> origin(O2,S2,D) #/\
end(O2,S2,D) #> origin(O1,S1,D))),

(meet_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims,

end(O1,S1,D) #>= origin(O2,S2,D) #/\
end(O2,S2,D) #>= origin(O1,S1,D)) #/\

exists(D, Dims,
end(O1,S1,D) #= origin(O2,S2,D) #\/
end(O2,S2,D) #= origin(O1,S1,D))),

% MACROS DEFINING N-ARY CONSTRAINTS
(all_not_overlap_sboxes(Dims,OIDs) --->

forall(O1,objects(OIDs),
forall(S1,sboxes([O1ˆsid]),

forall(O2,objects(OIDs),
O1ˆoid #< O2ˆoid #=>
forall(S2,sboxes([O2ˆsid]),

#\ overlap_sboxes(Dims,O1,S1,O2,S2)))))),
(all_type1_not_meet_sboxes(Dims,OIDs) --->

forall(O1,objects(OIDs),
forall(S1,sboxes([O1ˆsid]),

forall(O2,objects(OIDs),
O1ˆoid #< O2ˆoid #/\ O1ˆtype#=1 #/\ O2ˆtype#=1 #=>
forall(S2,sboxes([O2ˆsid]),

#\ meet_sboxes(Dims,O1,S1,O2,S2)))))),
% BUSINESS RULES
all_not_overlap_sboxes([1,2],[1,2,3,4,5]),
all_type1_not_meet_sboxes([1,2],[1,2,3,4,5])]).

Figure 6.1: Running example encoded with geost .
Net-WMS D6.1 page 52 of 83

Net-WMS FP6-034691

Figure 6.2: Overall architecture of the implementation.

formula that must hold for the constraint to be true. A term is a variable, an integer, an identifier,
or a compound term. A compound term consists of a functor (an identifier) and one or more
arguments (terms). A term is ground if it is free of variables. An entity denotes an object resp.
shifted box, the exact structure of which is left unspecified, but a possible Prolog representation
is shown in Appendix 6.8. An attref is a reference to an attribute of an entity.

Bounded existential resp. universal quantifiers are provided. They are meaningful if the quan-
tified variable occurs in the quantified fol. They are treated by expansion to a disjunction resp.
conjunction of instances of that fol with an element of the collection substituted for the quantified
variable. For example, formulas (6.1) and (6.2) below are equivalent:

∀(x, [0, 1, 2], p(x)) (6.1)

In the context of our application, quantified variables typically take vary over a collection of
dimensions, objects, or shifted boxes. objects(S) is a shorthand for the collection of objects
with object id in S. Similarly, sboxes(S) is a shorthand for a collection of shifted boxes.

p(0) ∧ p(1) ∧ p(2) (6.2)

A cardinality formula specifies a variable quantified over a list of terms, a lower and an upper
bound, and a fol template mentioning the quantified variable. The formula is true if and only if the
number of true instances of the fol template is within the given bounds. Cardinality formulas [20]
are treated by expansion to ¬, ∧ and ∨ connectives [13]. For example, formulas (6.3) and (6.4)
are equivalent:

Net-WMS D6.1 page 53 of 83

Net-WMS FP6-034691

#(y, [o1, o2, o3], 2, 3, y.type > 5) (6.3)

∨ o1.type > 5 ∧ o2.type > 5
o1.type > 5 ∧ o3.type > 5
o2.type > 5 ∧ o3.type > 5

 (6.4)

Arithmetic expressions and comparisons are over the rational numbers. The rationale for this is
that business rules often involve fractions of measures like weight or volume, and such fractions
are more convenient to express with a notation for rational division than in a purely integer
setting.

A folding operator allows to express e.g. the sum of some attribute over a set of objects. The
operator specifies a variable quantified over a list of terms, a binary operator, an identity element,
and a template mentioning the quantified variable. The identity element is needed for the empty
list case. For example, formulas (6.5) and (6.6) are equivalent:

@(y, [o1, o2, o3],+, 0, y.weight) (6.5)

o1.weight + o2.weight + o3.weight (6.6)

6.3 QFPA Core Fragment

In this section, we show how a formula p in the rule language is rewritten by a series of
equivalence-preserving transformations into a qfpa, i.e. a formula of the core fragment of the lan-
guage shown in Fig. 6.4. In fact, the fragment coincides with Quantifier-Free Presburger Arith-
metic (QFPA), although QFPA is usually described with a less restrictive syntax. The declarative
semantics of a qfpa is the natural one.

QFPA is widely used in symbolic verification, and there has been much work on deciding
whether a given QFPA formula is satisfiable [16]. Many methods based on integer programming
techniques [26] rely on having the formula on disjunctive normal form. However, for constraint
programming purposes, we are interested in necessary conditions that can be used for filtering
domain variables, and we are not aware on any such work on QFPA.

6.3.1 Rewriting into QFPA

We now show the details of rewriting the formula given as the geost parameterR in the following
eight steps into a qfpa R̂. Fig. 6.5 shows the details of some of these steps as tables. The cell in
the column entitled condition, if nonempty, mentions the condition under which the rewrite is
done. Later, we will show how R̂ is translated to generators of forbidden sets.

Macro expansion and constant folding. The implication and equivalence connectives,
bounded quantifiers, and cardinality and folding operators are eliminated. Ground integer
expressions are replaced by their values. Object and shifted box collections are expanded.

Elimination of negation. Using DeMorgan’s laws and negating relevant relops.

Net-WMS D6.1 page 54 of 83

Net-WMS FP6-034691

sentence ::= macro | fol

macro ::= head =⇒ body

head ::= term { to be substituted by a body }

body ::= term { to substitute for a head }

fol ::= ¬fol { negation }
| fol ∧ fol { conjunction }
| fol ∨ fol { disjunction }
| fol ⇒ fol { implication }
| fol ⇔ fol { equivalence }
| ∃(var , collection, fol) { existential quantification }
| ∀(var , collection, fol) { universal quantification }
| #(var , collection, integer , integer , fol) { cardinality }
| true
| false
| expr relop expr { arith. comparison over Q }
| head { macro application }

expr ::= expr + expr
| expr − expr
| min(expr , expr)
| max(expr , expr)
| expr × groundexpr
| groundexpr × expr
| expr/groundexpr
| attref
| integer
| @(var , collection, fop, expr , expr) { folding }
| variable { quantified variable }
| head { macro application }

groundexpr ::= expr { where expr is ground }

attref ::= entity .attr

attr ::= term { attribute name }
| variable { quantified variable }

relop ::= < | = | > | 6= | ≤ | ≥

fop ::= + | min | max

collection ::= list
| objects(list) { list of oids }
| sboxes(list) { list of sids }

list ::= [] | [term|list]

Figure 6.3: The rule language
Net-WMS D6.1 page 55 of 83

Net-WMS FP6-034691

qfpa ::= qfpa ∧ qfpa { conjunction }
| qfpa ∨ qfpa { disjunction }
|

∑
i integer i · attref i ≥ integer { base case }

Figure 6.4: Core fragment of the language. An attref corresponds to a nonground attribute of an
object or an attribute of a shifted box of a polymorphic object.

Normalization of arithmetic. Arithmetic relations are normalized to one of the forms expr ≥ 0
or expr > 0.

Elimination of ×, / and −. Any occurrence of these operators in arithmetic expressions is
eliminated. At the same time, all operands are associated with a rational coefficient (c
in the table). The elimination is made possible by the fact that in multiplication, at least
one factor must be ground and is simply multiplied into the coefficient. Similarly, in di-
vision, the coefficient is simply divided by the divisor, which must be ground. After this
step, an arithmetic expression is:

• a rational number c, denoted c · 1, or

• an attref r with a rational coefficient c, denoted c · r, or

• two arithmetic expressions combined with +, min or max.

Moving + inside min and max. Any expression with min or max occurring inside + are
rewritten by using the commutative and distributive laws (6.7) so that the + is moved
inside the other operator.

a + b = b + a
a + min(b, c) = min(a + b, a + c)
a + max(b, c) = max(a + b, a + c)

(6.7)

Elimination of min and max. Any min or max operators occurring in arithmetic relations are
eliminated, replacing such relations by new relations combined by ∧ or ∨. After this step,
an arithmetic expression is a linear combination of attrefs with rational coefficients, plus
an optional constant.

Elimination of rational numbers. Any arithmetic relation r, which can now only be of the
form e > 0 or e ≥ 0, is normalized into the form e′′ ≥ c′′ where e′ and c′ are intermediate
expressions in:

• Let e′ be the linear combination obtained by multiplying e by the least common
multiplier of the denominators of the coefficients of e. Recall that those coefficients
are rational numbers. Thus, the coefficients of e′ are integers.

• Let c′ be 1 if r has the form e > 0, or 0 if r has the form e ≥ 0.

• If e′ contains a constant term c, then e′′ = e′− c and c′′ = c′− c. Otherwise, e′′ = e′

and c′′ = c′.

Net-WMS D6.1 page 56 of 83

Net-WMS FP6-034691

line p R1(p) condition
1 p R1(q) q = macro(p)
2 ¬p ¬R1(p)
3 p⇒ q R1(q ∨ ¬p)
4 p⇔ q R1((p⇒ q) ∧ (q ⇒ p))
5 ∃(x, [y1, . . . , yn], p) R1(px/y1

∨ · · · ∨ px/yn
)

6 ∀(x, [y1, . . . , yn], p) R1(px/y1
∧ · · · ∧ px/yn

)
7 @(x, [y1, . . . , yn], ◦, z, p) R1(px/y1

◦ · · · ◦ px/yn
◦ z)

8 #(x, [], l, u, p) true l ≤ 0 ≤ u

9 #(x, [], l, u, p) false l > 0 ∨ 0 > u

10 #(x, [y1, . . . , yn], l, u, p) R1

(
(px/y1

∧#(x, [y2, . . . , yn], l − 1, u− 1, p)∨
(¬px/y1

∧#(x, [y2, . . . , yn], l, u, p)

)
n > 0

11 expr i i = ieval(p)
12 objects([o1, . . . , on]) objects with the given oids
13 sboxes([s1, . . . , sn]) sboxes with the given sids

p R3(p)
x < y y − x > 0
x > y x− y > 0
x ≤ y y − x ≥ 0
x ≥ y x− y ≥ 0
x = y x− y ≥ 0 ∧ y − x ≥ 0
x 6= y x− y > 0 ∨ y − x > 0

p R4(p, c) condition
min(x, y) min(R4(x, c), R4(y, c)) c > 0
min(x, y) max(R4(x, c), R4(y, c)) c < 0
max(x, y) max(R4(x, c), R4(y, c)) c > 0
max(x, y) min(R4(x, c), R4(y, c)) c < 0

x + y R4(x, c) + R4(y, c)
x− y R4(x, c) + R4(y,−c)
x× y R4(x, c× v) v = reval(y)
x× y R4(y, c× v) v = reval(x)
x/y R4(x, c/v) v = reval(y)
x (c× x) · 1 x integer
x c · x x attref

p R6(p)
max(x, y) > 0 x > 0 ∨ y > 0
min(x, y) > 0 x > 0 ∧ y > 0
max(x, y) ≥ 0 x ≥ 0 ∨ y ≥ 0
min(x, y) ≥ 0 x ≥ 0 ∧ y ≥ 0

Figure 6.5: Top. Rewrite phase 1, of a formula p into a formula R1(p), eliminates macros
(line 1), implication (line 3), equivalence (line 4), bounded quantifiers (line 5-6), folding op-
erators (line 7), cardinality operators (line 8-10), ground attribute references (line 11), and entity
collections (line 12-13). If a compound term does not match any line 1-13, its arguments are
rewritten recursively. px/y denotes the term p with y substituted for x. macro(p) denotes the
macro expansion of the formula p. ieval(p) denotes the integer value of the ground expression
p. Bottom left. Rewrite phase 3, of a formula p into a formula R3(p), normalizes comparison
operators into either ≥ or >. Bottom center. Rewrite phase 4, of a formula p into a formula
R4(p, 1), eliminates the −, × and / operators, and assigns a coefficient c to each operand of the
rewritten formula. reval(y) denotes the rational value of the ground expression y. Bottom right.
Rewrite phase 6, of a formula p into a formula R6(p), eliminates min and max.

Net-WMS D6.1 page 57 of 83

Net-WMS FP6-034691

Simplification. Any entailed or disentailed arithmetic comparison is replaced by the appropri-
ate Boolean constant (true or false). Any ∧ or ∨ expression containing one of these
constants is simplified using partial evaluation.

Example 7 Returning to our running example, we show in Figs. 6.6-6.7 how the initial business
rules are successively rewritten into a qfpa. The example shows that the rewrite process essen-
tially amounts to partial evaluation. The resulting qfpa, R̂, is a conjunction of six subformulas
corresponding respectively to:

• From the business rule all not overlap sboxes, conditions to prevent o5 from over-
lapping o1, o2, o3 and o4.

• From the business rule all type1 not meet sboxes, conditions to prevent o5 from
meeting o2 and o4.

6.4 Compiling to an Efficient Run-Time Representation

It is straightforward to obtain necessary conditions for qfpas as well as pruning rules operating
on one variable at a time. Based on such conditions and pruning rules, we will show how to
construct generators of k-dimensional forbidden sets. We call such generators k-indexicals, for
they are generalization of the indexicals of cc(FD) [32]. Finally, we show how the forbidden
sets generated by such indexicals are aggregated by the sweep-based algorithm [4] and used for
filtering.

Indexicals were first introduced for the language cc(FD) [32] and later used in the context of
CLP(FD) [11, 10], AKL [8] and finite set constraints [30]. They have proven a powerful and
efficient way of implementing constraint propagation. A key feature of an indexical is that it is
a function of the current domains of the variables on which it depends. Thus, indexicals also
capture the propagation from variables to variables that occurs as variables are pruned. In the
cited implementations, an indexical is a procedure that computes the feasible set of values for a
variable. We generalize this notion to generating a forbidden set of k-dimensional points for an
object, and so k-indexicals captures the propagation from objects to objects that occurs as object
attributes are pruned.

6.4.1 Necessary Conditions

For a formula R denoting a linear combination of variables, let MAX (R) denote the expression
that replaces every attref x in R by x if x occurs with a positive coefficient, and by x otherwise.
Thus, MAX (R) is a formula that computes an upper bound of R wrt. the current domains.

We will ignore the degenerate cases where R̂ is true resp. false, in which case geost
merely succeeds resp. fails. For the normal qfpa cases, we obtain the necessary conditions shown
in Table 6.1.

6.4.2 Pruning Rules

For the base case
∑

i ci · xi ≥ r, we have the well-known pruning rules (6.8), which provide
sharp bounds; see e.g. [19] for details.

Net-WMS D6.1 page 58 of 83

Net-WMS FP6-034691

all_not_overlap_sboxes([1,2],[1,2,3,4,5]),
all_type1_not_meet_sboxes([1,2],[1,2,3,4,5])]).

V

0BBB@

¬

0BB@ V 0BB@
4 > x51

x51 + 2 > 1
3 > x52

x52 + 2 > 2

1CCA
1CCA

¬

0BB@ V 0BB@
4 > x51

x51 + 2 > 3
4 > x52

x52 + 2 > 3

1CCA
1CCA

¬
„ V „

2 + `31 > 3
5 + `32 > 7

« «

¬

0BB@ V 0BB@
2 + `31 > x51
x51 + 2 > 2

5 + `32 > x52
x52 + 2 > 5

1CCA
1CCA

¬

0BB@ V 0BB@
6 > x51

x51 + 2 > 3
8 > x52

x52 + 2 > 7

1CCA
1CCA

¬

0BBBBBBBBB@
V

0BBBBBBBBB@

4 ≥ x51
x51 + 2 ≥ 3

4 ≥ x52
x52 + 2 ≥ 3

W 0BB@
4 = x51

x51 + 2 = 3
4 = x52

x52 + 2 = 3

1CCA

1CCCCCCCCCA

1CCCCCCCCCA

¬

0BBBBBBBBB@
V

0BBBBBBBBB@

6 ≥ x51
x51 + 2 ≥ 3

8 ≥ x52
x52 + 2 ≥ 7

W 0BB@
6 = x51

x51 + 2 = 3
8 = x52

x52 + 2 = 7

1CCA

1CCCCCCCCCA

1CCCCCCCCCA

1CCCA

V

0BBB@

W 0BB@
4 ≤ x51

x51 + 2 ≤ 1
3 ≤ x52

x52 + 2 ≤ 2

1CCA
W 0BB@

4 ≤ x51
x51 + 2 ≤ 3

4 ≤ x52
x52 + 2 ≤ 3

1CCA
W „

2 + `31 ≤ 3
5 + `32 ≤ 7

«
W 0BB@

2 + `31 ≤ x51
x51 + 2 ≤ 2

5 + `32 ≤ x52
x52 + 2 ≤ 5

1CCA
W 0BB@

6 ≤ x51
x51 + 2 ≤ 3

8 ≤ x52
x52 + 2 ≤ 7

1CCA

W
0BBBBBBBBB@

4 < x51
x51 + 2 < 3

4 < x52
x52 + 2 < 3

V 0BB@
4 6= x51

x51 + 2 6= 3
4 6= x52

x52 + 2 6= 3

1CCA

1CCCCCCCCCA

W
0BBBBBBBBB@

6 < x51
x51 + 2 < 3

8 < x52
x52 + 2 < 7

V 0BB@
6 6= x51

x51 + 2 6= 3
8 6= x52

x52 + 2 6= 7

1CCA

1CCCCCCCCCA

1CCCA

V

0BBB@

W 0BB@
x51 − 4 ≥ 0

1− x51 + 2 ≥ 0
x52 − 3 ≥ 0

2− x52 + 2 ≥ 0

1CCA
W 0BB@

x51 − 4 ≥ 0
3− x51 + 2 ≥ 0

x52 − 4 ≥ 0
3− x52 + 2 ≥ 0

1CCA
W „

3− 2 + `31 ≥ 0
7− 5 + `32 ≥ 0

«
W 0BB@

x51 − 2 + `31 ≥ 0
2− x51 + 2 ≥ 0

x52 − 5 + `32 ≥ 0
5− x52 + 2 ≥ 0

1CCA
W 0BB@

x51 − 6 ≥ 0
3− x51 + 2 ≥ 0

x52 − 8 ≥ 0
7− x52 + 2 ≥ 0

1CCA

W

0BBBBBBBBBBBBBBBBB@

x51 − 4 > 0
3− x51 + 2 > 0

x52 − 4 > 0
3− x52 + 2 > 0

V
0BBBBBBBBB@

W „
4− x51 > 0
x51 − 4 > 0

«
W „

x51 + 2− 3 > 0
3− x51 + 2 > 0

«
W „

4− x52 > 0
x52 − 4 > 0

«
W „

x52 + 2− 3 > 0
3− x52 + 2 > 0

«

1CCCCCCCCCA

1CCCCCCCCCCCCCCCCCA

W

0BBBBBBBBBBBBBBBBB@

x51 − 6 > 0
3− x51 + 2 > 0

x52 − 8 > 0
7− x52 + 2 > 0

V
0BBBBBBBBB@

W „
6− x51 > 0
x51 − 6 > 0

«
W „

x51 + 2− 3 > 0
3− x51 + 2 > 0

«
W „

8− x52 > 0
x52 − 8 > 0

«
W „

x52 + 2− 7 > 0
7− x52 + 2 > 0

«

1CCCCCCCCCA

1CCCCCCCCCCCCCCCCCA

1CCCA

V

0BBB@

W 0BB@
1 · x51 +−4 · 1 ≥ 0

1 · 1 +−1 · x51 +−2 · 1 ≥ 0
1 · x52 +−3 · 1 ≥ 0

2 · 1 +−1 · x52 +−2 · 1 ≥ 0

1CCA
W 0BB@

1 · x51 +−4 · 1 ≥ 0
3 · 1 +−1 · x51 +−2 · 1 ≥ 0

1 · x52 +−4 · 1 ≥ 0
3 · 1 +−1 · x52 +−2 · 1 ≥ 0

1CCA
W „

3 · 1 +−2 · 1 +−1 · `31 ≥ 0
7 · 1 +−5 · 1 +−1 · `32 ≥ 0

«
W 0BB@

1 · x51 +−2 · 1 +−1 · `31 ≥ 0
2 · 1 +−1 · x51 +−2 · 1 ≥ 0

1 · x52 +−5 · 1 +−1 · `32 ≥ 0
5 · 1 +−1 · x52 +−2 · 1 ≥ 0

1CCA
W 0BB@

1 · x51 +−6 · 1 ≥ 0
3 · 1 +−1 · x51 +−2 · 1 ≥ 0

1 · x52 +−8 · 1 ≥ 0
7 · 1 +−1 · x52 +−2 · 1 ≥ 0

1CCA

W

0BBBBBBBBBBBBBBBBB@

1 · x51 +−4 · 1 > 0
3 · 1 +−1 · x51 +−2 · 1 > 0

1 · x52 +−4 · 1 > 0
3 · 1 +−1 · x52 +−2 · 1 > 0

V
0BBBBBBBBB@

W „
4 · 1 +−1 · x51 > 0
1 · x51 +−4 · 1 > 0

«
W „

1 · x51 + 2 · 1 +−3 · 1 > 0
3 · 1 +−1 · x51 +−2 · 1 > 0

«
W „

4 · 1 +−1 · x52 > 0
1 · x52 +−4 · 1 > 0

«
W „

1 · x52 + 2 · 1 +−3 · 1 > 0
3 · 1 +−1 · x52 +−2 · 1 > 0

«

1CCCCCCCCCA

1CCCCCCCCCCCCCCCCCA

W

0BBBBBBBBBBBBBBBBB@

1 · x51 +−6 · 1 > 0
3 · 1 +−1 · x51 +−2 · 1 > 0

1 · x52 +−8 · 1 > 0
7 · 1 +−1 · x52 +−2 · 1 > 0

V
0BBBBBBBBB@

W „
6 · 1 +−1 · x51 > 0
1 · x51 +−6 · 1 > 0

«
W „

1 · x51 + 2 · 1 +−3 · 1 > 0
3 · 1 +−1 · x51 +−2 · 1 > 0

«
W „

8 · 1 +−1 · x52 > 0
1 · x52 +−8 · 1 > 0

«
W „

1 · x52 + 2 · 1 +−7 · 1 > 0
7 · 1 +−1 · x52 +−2 · 1 > 0

«

1CCCCCCCCCA

1CCCCCCCCCCCCCCCCCA

1CCCA

Figure 6.6: Running example business rules (top), formula after macro expansion and constant
folding (middle left), elimination of negation (middle right), normalization of arithmetic (bottom
left), and elimination of operators (bottom right).
Net-WMS D6.1 page 59 of 83

Net-WMS FP6-034691

V

0BBB@

W 0BB@
x51 ≥ 4

−1 · x51 ≥ 1
x52 ≥ 3

−1 · x52 ≥ 0

1CCA
W 0BB@

x51 ≥ 4
−1 · x51 ≥ −1

x52 ≥ 4
−1 · x52 ≥ −1

1CCA
W „

−1 · `31 ≥ −1
−1 · `32 ≥ −2

«
W 0BB@

−1 · `31 + x51 ≥ 2
−1 · x51 ≥ 0

−1 · `32 + x52 ≥ 5
−1 · x52 ≥ −3

1CCA
W 0BB@

x51 ≥ 6
−1 · x51 ≥ −1

x52 ≥ 8
−1 · x52 ≥ −5

1CCA

W

0BBBBBBBBBBBBBBBBB@

x51 ≥ 5
−1 · x51 ≥ 0

x52 ≥ 5
−1 · x52 ≥ 0

V
0BBBBBBBBB@

W „
−1 · x51 ≥ −3

x51 ≥ 5

«
W „

x51 ≥ 2
−1 · x51 ≥ 0

«
W „

−1 · x52 ≥ −3
x52 ≥ 5

«
W „

x52 ≥ 2
−1 · x52 ≥ 0

«

1CCCCCCCCCA

1CCCCCCCCCCCCCCCCCA

W

0BBBBBBBBBBBBBBBBB@

x51 ≥ 7
−1 · x51 ≥ 0

x52 ≥ 9
−1 · x52 ≥ −4

V
0BBBBBBBBB@

W „
−1 · x51 ≥ −5

x51 ≥ 7

«
W „

x51 ≥ 2
−1 · x51 ≥ 0

«
W „

−1 · x52 ≥ −7
x52 ≥ 9

«
W „

x52 ≥ 6
−1 · x52 ≥ −4

«

1CCCCCCCCCA

1CCCCCCCCCCCCCCCCCA

1CCCA

V

0BBB@

W „
x51 ≥ 4
x52 ≥ 3

«
W 0BB@

x51 ≥ 4
−1 · x51 ≥ −1

x52 ≥ 4
−1 · x52 ≥ −1

1CCA
W 0@ −1 · `31 + x51 ≥ 2

−1 · `32 + x52 ≥ 5
−1 · x52 ≥ −3

1A
W 0@ x51 ≥ 6

−1 · x51 ≥ −1
−1 · x52 ≥ −5

1A

W
0BBBBBBBBB@

x51 ≥ 5
x52 ≥ 5

V
0BBBBB@

W „
−1 · x51 ≥ −3

x51 ≥ 5

«
x51 ≥ 2W „

−1 · x52 ≥ −3
x52 ≥ 5

«
x52 ≥ 2

1CCCCCA

1CCCCCCCCCA

W
0BBBBBBB@

x51 ≥ 7
−1 · x52 ≥ −4

V
0BBB@

W „
−1 · x51 ≥ −5

x51 ≥ 7

«
x51 ≥ 2W „
x52 ≥ 6

−1 · x52 ≥ −4

«
1CCCA

1CCCCCCCA

1CCCA

Figure 6.7: Running example formula after elimination of rational numbers (left) and simplifica-
tion (right), resulting in a QFPA formula R̂.

qfpa t necessary condition N(t)∑
i ci · xi ≥ r MAX (

∑
i ci · xi) ≥ r

p ∨ q N(p) ∨N(q)
p ∧ q N(p) ∧N(q)

Table 6.1: Necessary condition N(t) for qfpa t

Net-WMS D6.1 page 60 of 83

Net-WMS FP6-034691

∀j

xj ≥ d

r−MAX (
P

i6=j ci·xi)

cj
e, if cj > 0

xj ≤ b
−r+MAX (

P
i6=j ci·xi)

−cj
c, otherwise

(6.8)

Consider now a disjunction p∨ q of two base cases and a variable xj occurring in at least one
disjunct.

• If xj occurs in p but not in q, rule (6.8) is only valid for p if the necessary condition for q
does not hold.

• Similarly if xj occurs in q but not in p.

• If xj occurs in both p and q, we can use rule (6.8) for both p and q and conclude that xj

must be in the union of the two feasible intervals.

Finally, consider a conjunction p ∧ q, i.e. both p and q must hold. If xj occurs in both p and
q, we can use rule (6.8) for both p and q and conclude that xj must be in the intersection of the
two feasible intervals.

Example 8 Returning to our running example, consider the fragment x51 ≥ 4 ∨ x52 ≥ 3 of the
qfpa, which comes from a rule preventing o5 from overlapping o1. Suppose that we want to prune
x52. Then we can combine the necessary condition for x51 ≥ 4 with rule (6.8) for x52 ≥ 3 into
the conditional pruning rule:

max(x51) < 4⇒ x52 ≥ 3

However, as we will show in the next section, instead of using such conditional pruning rules,
we unify necessary conditions and pruning rules into multi-dimensional forbidden sets and ag-
gregate them per object. For the above fragment, the two-dimensional forbidden set for o5 is
([1, 3], [1, 2]), denoting the fact that (x51, x52) should be distinct from all the pairs (1, 1), (1, 2),
(2, 1), (2, 2), (3, 1), (3, 2).

6.4.3 k-Indexicals

Recall that the set of rules given in R has been rewritten into a qfpa R̂. Consider this formula,
or some subformula R̂i of it if R̂ is a conjunction (see Section 6.4.4). The idea is to compile this
subformula, for each object o mentioned by it, into a k-indexical for R̂i and o. The forbidden
sets that it generates can then be aggregated and used by the sweep-point kernel [4] to prune the
nonground attributes of o. Let us introduce some notation to make this idea clear.

Definition 3 A forbidden set for qfpa r and object o is a set5 of k-dimensional points such that,
if o is placed at any of these points, r is disentailed.

Definition 4 A k-indexical for qfpa r and object o is a procedure that functions as a generator
of forbidden sets for r and o. It has the form object .x 6∈ ibody where ibody is defined in Fig. 6.8.
The k-indexical depends on object o′ if ibody mentions o′.

5A forbidden set is not explicitly represented as a set of points, but rather by a set of boxes, as is the case in the
earlier implementation [4].

Net-WMS D6.1 page 61 of 83

Net-WMS FP6-034691

k-indexicals are described by the inductive definition shown in Fig. 6.8. They are built up
from generators of k-dimensional half-planes, combined by union and intersection operations.

k-indexical ::= object .x 6∈ ibody

ibody ::= ibody ∩ ibody
| ibody ∪ ibody
| {p ∈ Zk | p[d] < d integer−

P
ubterm

usi e}

| {p ∈ Zk | p[d] > b integer+
P

ubterm
usi c}

| if
∑

ubterm < r then Zk else ∅

ubterm ::= usi · attref
| −usi · attref
| integer

d ::= integer { denoting a dimension }

usi ::= integer { > 0 }

Figure 6.8: k-indexicals

6.4.4 Compilation

The qfpa R̂, normally6 a conjunction r̂1 ∧ · · · ∧ r̂n, is compiled to k-indexicals by the following
steps:

1. Partition the conjuncts of R̂ into equivalence classes R̂1, . . . , R̂m such that for all i < j,
r̂i and r̂j are in the same equivalence class if and only if they mention7 the same set of
objects of O.

2. For each equivalence class R̂i and object o ∈ O mentioned by R̂i, map R̂i (as a conjunc-
tion) into a k-indexical for o, having the form o.x 6∈ Fo(R̂i), according to Table 6.2.

The mapping closely follows the pruning rules (6.8), except now we want to obtain a forbidden
set instead of a feasible interval. Row 5 of Table 6.2 corresponds to the case where r does not
mention o, in which case all points are forbidden for o if r is disentailed, and no points are
forbidden for o otherwise.

The rationale for aggregating the conjuncts into equivalence classes, as opposed to mapping
one conjunct at a time, is the opportunity to increase the granularity of the indexicals and to
merge subformulas coming from different business rules. This opens the scope for future work
on global simplification of formulas, and increases the amount of subexpressions that can be
shared within a k-indexical.

6Since it comes from the conjunction of business rules stated in the last argument of geost.
7A formula mentions an object o if it refers to a nonground attribute of o.

Net-WMS D6.1 page 62 of 83

Net-WMS FP6-034691

r Fo(r) condition
p ∨ q Fo(p) ∩ Fo(q)
p ∧ q Fo(p) ∪ Fo(q)∑

i ci · xi ≥ r {p ∈ Zk | p[d] < d r−MAX (
P

i6=j ci·xi)

cj
e} xj = o.x[d], cj > 0∑

i ci · xi ≥ r {p ∈ Zk | p[d] > b−r+MAX (
P

i6=j ci·xi)

−cj
c} xj = o.x[d], cj < 0∑

i ci · xi ≥ r if MAX (
∑

i ci · xi) < r then Zk else ∅ o.x 6∈ {xi}

Table 6.2: Mapping a qfpa r to a generator of forbidden sets, Fo(r), for the object o. We assume
here that o is not polymorphic.

It is well known that indexicals can be efficiently compiled and executed by a virtual ma-
chine [11, 10]. In our context, we predict that there will be a large amount of common subterms
in the k-indexicals, and so common subexpression elimination will be quite important. There-
fore, a register-based virtual machine would seem an appropriate choice.

It is worth noting that the forbidden sets generated by our compiler do not necessarily include
all infeasible points. Consider e.g. the qfpa o.x[1] + o.x[2] = 3 with o.x[1] ∈ [0, 3], o.x[2] ∈
[0, 3], which we compile to:

o.x 6∈
⋃ (

([0, 2− o.x[2]], [0, 2− o.x[1]])
([4− o.x[2], 3], [4− o.x[1], 3])

)
so with the initial domains, the forbidden set would be empty, whereas a forbidden set that
includes all points such that o.x[1] + o.x[2] 6= 3 could easily be computed. However, such a set
would require a number of boxes that depends on the domain sizes, whereas our compiler has
no such dependency. This example illustrates a trade-off between space complexity and pruning
effectiveness.

Example 9 Returning to our running example, we obtained a qfpa which was a conjunction of
six subformulas (see Fig. 6.7). They are partitioned into two equivalence classes:

1. One for the single conjunct that mentions both o3 and o5, reflecting the business rule that
o3 and o5 must not overlap. It is mapped to k-indexicals (6.9) and (6.10).

2. One for the five conjuncts that only mention o5 (because o1, o2 and o4 are ground). It is
mapped to k-indexical (6.11) and reflects several business rules:

• o5 must not overlap o1, o2 nor o4,

• o5 must not meet o2 nor o4, for the type attribute of these three objects takes the
value 1.

The three k-indexicals reflect the following business rules:

1. o3 must not take a shape that will cause it to overlap o5. Note that this k-indexical prop-
agates from o5 to the shape id of o3. Pruning of shape ids of polymorphic objects is dis-
cussed in Section 6.5. Initially, no forbidden boxes are generated.

Net-WMS D6.1 page 63 of 83

Net-WMS FP6-034691

s3 6∈
⋂ {i ∈ dom(s3) | s3 = i⇒ `31 > x51 − 2}

{i ∈ dom(s3) | s3 = i⇒ `32 > x52 − 5}
if x52 > 3 then Z else ∅

 (6.9)

2. o5 must not overlap o3. Note that this k-indexical propagates from o3 to o5. Initially, it
will generate the forbidden box shown in Fig. 6.9 (top left).

o5.x 6∈ ([1, (`31 + 1)], [4, (`32 + 4)]) (6.10)

3. o5 must not overlap o1, o2 nor o4, nor meet o2 nor o4. This k-indexical will generate the
forbidden boxes shown in Fig. 6.9 (top right).

o5.x 6∈
⋃

([1, 3], [1, 2])
([2, 3], [2, 3])
([2, 5], [6, 6])

⋂

([1, 4], [1, 4])

⋃
([4, 4], [1, 6])
([1, 1], [1, 6])
([1, 9], [4, 4])
([1, 9], [1, 1])

⋂
([1, 6], [5, 6])⋃ ([1, 9], [5, 5])
([6, 6], [1, 6])
([1, 1], [1, 6])

(6.11)

6.4.5 Filtering Algorithm

We now give a sketch of a filtering algorithm for geost(k,O,S,R). Let I(o) denote the set
of k-indexicals for object o ∈ O wrt. the given rules R, let eval(i) denote the evaluation of
k-indexical i wrt. the current domains, let sweep(o, F) denote the application of the sweep-based
algorithm to the object o wrt. the forbidden set F . Recall that the sweep-based algorithm prunes
the minimum and maximum values of the origin coordinates of o. Our proposed Algorithm 1 is
a straightforward propagation loop.

Example 10 Returning to our running example, suppose now that the sweep-point kernel wants
to adjust the lower bound of x51. Fig. 6.9 (bottom) traces the steps performed by the algorithm
when it walks from a lexicographically smallest position to the first feasible position of o5. The
result is that the lower bound of x51 is adjusted to 5.

Net-WMS D6.1 page 64 of 83

Net-WMS FP6-034691

Figure 6.9: Running example: forbidden boxes generated by (6.10) (top left) and by (6.11) (top
right). Sequence of candidate positions explored by the sweep-based algorithm in order to reach
the feasible position (5, 1) (bottom). The only purpose of using different colors and shadows of
grey is to show the borders of the forbidden boxes.

Net-WMS D6.1 page 65 of 83

Net-WMS FP6-034691

PROCEDURE Filter(O, I)
1: Q← O
2: while Q 6= ∅ do
3: o← some element from Q
4: Q← Q \ {o}
5: F ←

⋃
{eval(i) | i ∈ I(o)}

6: if ¬sweep(o, F) then
7: return fail
8: else if a coordinate of o was pruned then
9: Q← Q ∪ {o′ | I(o′) depends on o}

10: end if
11: end while
12: if all objects in O are ground then
13: return succeed
14: else
15: return suspend
16: end if

Algorithm 1: Sketch of a filtering algorithm for geost(k,O,S,R)

6.5 Polymorphism

We say that an object o is polymorphic if its shape id is nonground. This feature could for example
be used to model a crate that can be rotated 90 degrees around some axis, in which case each
rotated position would correspond to a distinct shape.

In the context of configuration problems, polymorphism can also be used to model the fact that
we have to select for an abstract object a possible concrete object that realizes a given function,
e.g. selecting a table among different possible table models.

Polymorphism is not a semantic issue, as the declarative semantics is defined in terms of
ground objects. But it is an issue for the operational semantics, i.e. for filtering. We now describe
how a small extension to the implementation allows to deal with polymorphic objects.

Polymorphic shifted boxes. With polymorphic objects, the expanded sentences of the rule
language will mention attributes of shifted boxes, where the values of those attributes depend on
the shape id. To deal with this complication, we introduce for polymorphic objects o a virtual
pbox [j] attribute, which stands for the jth shifted box that has the same shape id as o. Thus
a pbox attribute behaves like a shifted box but with nonground attributes that have evaluable
lower and upper bounds, which is precisely what is needed in order to use the necessary condi-
tions (Table 6.1) and pruning rules (6.8). Phase 1 of the rewrite process introduces pboxes when
it encounters an expression sboxes([o.sid]) and o is polymorphic. Assuming that each possi-
ble shape of o consists of the same number, n, of shifted boxes, the expression is rewritten to
[o.pbox [1], . . . , o.pbox [n]]. Thus the requirement that n be fixed is a restriction of the approach.

Propagating to o.sid . We take the approach of treating variable o.sid as the (k + 1)th dimen-
sion, where the sweep-based algorithm treats the (k+1)th dimension as an assignment dimension
— it seeks a witness for each value in the domain. For the compilation, all we have to change is
to make the indexicals generate forbidden sets in Zk+1 instead of Zk, and to add two more types

Net-WMS D6.1 page 66 of 83

Net-WMS FP6-034691

of generators of forbidden sets. Table 6.3 shows the updated table of generators of forbidden sets.
Its rows 5 and 6 generate forbidden sets for the assignment dimension k + 1, i.e. for o.sid .

r Fo(r) condition
p ∨ q Fo(p) ∩ Fo(q)
p ∧ q Fo(p) ∪ Fo(q)∑

i ci · xi ≥ r {p ∈ Zk+1 | p[d] < d r−MAX (
P

i6=j ci·xi)

cj
e} xj = o.x[d], cj > 0∑

i ci · xi ≥ r {p ∈ Zk+1 | p[d] > b−r+MAX (
P

i6=j ci·xi)

−cj
c} xj = o.x[d], cj < 0∑

i ci · xi ≥ r {p ∈ Zk+1 | o.sid = p[k + 1]⇒ xj < d r−MAX (
P

i6=j ci·xi)

cj
e} xj = o.pbox []. , cj > 0∑

i ci · xi ≥ r {p ∈ Zk+1 | o.sid = p[k + 1]⇒ xj > b−r+MAX (
P

i6=j ci·xi)

−cj
c} xj = o.pbox []. , cj < 0∑

i ci · xi ≥ r if MAX (
∑

i ci · xi) < r then Zk+1 else ∅ o 6∈ {xi}

Table 6.3: Mapping a qfpa r to a generator of forbidden sets, Fo(r), for the object o, which may
be polymorphic.

6.6 Experimental Results

The geost constraint, including the rewriting, compilation, and sweep-based algorithms, have
been implemented in Prolog using the global constraint programming API of SICStus Pro-
log 4 [9], compiled with gcc -02 version 4.0.2 on a 3GHz Pentium IV with 1MB of cache.

In order to get a first assessment of the scalability of the approach, we ran a benchmark suite
consisting of 84 bin packing problems. In each benchmark instance, a number n of containers of
varying sizes up to 600×1200×350 needs to be packed in seven bins of size 800×1200×1500,
subject to the constraints:

• No objects overlap.

• Each object is either on the floor or resting on some other object.

• For any two objects in a pile, the overhang can be at most 10 units.

The search was performed by labeling the coordinates of one object at a time. For each in-
stance, we measured two space and one time quantity: (1) the amount of memory in use after
posting the constraint, (2) the extra amount of memory in use just after finding the first solution
with all choicepoints still open, and (3) time spent posting the constraint and finding the first
solution. We report the memory in use in the Prolog stacks after garbage collection.

Fig. 6.10 summarizes the result. We find that the time and space complexity, static as well as
dynamic, is O(n2). The coefficient of the n2 term is rather high, we implement the sweep-based
algorithm and all management of forbidden boxes in C, like in the previous version of geost, we
expect this coefficient to decrease sharply.

Net-WMS D6.1 page 67 of 83

Net-WMS FP6-034691

Figure 6.10: Memory and time consumption for placing n containers to be placed in seven bins
without overlap. The static curve is the memory in use just after posting the constraint. The
dynamic curve is the extra memory in use just after finding the first solution.

6.7 Conclusion and Open Issues

We have presented a global constraint that enforces rules written in a language based on arith-
metic and first-order logic to hold among a set of objects. By rewriting the rules to QFPA formu-
las, we have shown how to compile them to k-indexicals. Finally, we have shown the forbidden
sets generated by such indexicals can be aggregated by a sweep-based algorithm and used for
filtering. Initial experiments support the feasibility of the approach. We would like to point out
the following issues, which are areas of further work.

Generality. Our restriction that object attributes (except shape id and origin) must be ground is
somewhat artificial, and we plan to lift it. The rewritten QFPA formulas would simply have more
variables per object, and the sweep-based algorithm would deal not with a k- or k+1-dimensional
placement space, but with an m-dimensional solution space, where m is the number of possibly
nonground attributes per object. In particular, in order to deal with objects whose length in some
dimension is a domain variable that occurs in some other constraint, the length and possibly the
end-point would have to be expressed as nonground object attributes. Similarly, to treat the time
dimension, we would add three nonground object attributes start , duration , and completion , as
in [4], to be included in the solution space.

Built-in rules. Non-overlapping constraints are laws of nature and are likely to be present in
any packing problem. Similarly, lexicographic ordering constraints are a well-known symmetry
breaking device, and are expected to be crucial in problems involving several objects of the same
shape. Previously in the project, we have worked out a wealth of powerful, special methods
for handling these two constraints. We plan to come up with a software architecture where the
general rule mechanism coexists with these special methods. Since both the general and the
special methods are based on objects, shifted boxes and the sweep-point kernel, this should
present no problem in principle, as long as the methods agree on the set of attributes to use.

Theoretical properties. It has been shown in Prop. 1 and 2 that the PKML/Rules2CP rewrit-
ing system is confluent and Noetherian. Since our rule language is essentially a subset of

Net-WMS D6.1 page 68 of 83

Net-WMS FP6-034691

Rules2CP, the results apply to geost rules as well. A size bound on programs generated from
Rules2CP is also known (see Prop. 3) and applies to geost provided that min, max and car-
dinality is not used in the rules, since these operators can cause an exponential (for min and
max) resp. quadratic (for cardinality) [13] blow-up. Consequently, one can certainly construct
pathological cases where the rewrite phases and/or runtime representation require huge amounts
of memory. Even if, at this time, this was not really a problem for the instances and rules we
experimented with 8, one way to manage the complexity of the rewrite phases is to apply simpli-
fying rewrites, e.g. Phase 8, as eagerly as possibly. Another way could be to memoize patterns
that have already been rewritten. Finally, common subexpression elimination will mitigate this
problem.

6.8 Appendix A: Prolog Syntax

Table 6.4 shows the Prolog syntax of the various operators, objects, shifted boxes and attributes.

abstract Prolog
. ˆ
¬ #\
∧ #/\
∨ #\/
⇒ #=>
⇔ #<=>
< #<
= #=
> #>
≤ #=<
≥ #>=
6= #\=
∀ forall
∃ exists
card
@ fold

=⇒ --->
x[D] x(D)
t[D] t(D)
l[D] l(D)

object object(oid-OID,sid-SID,x-X,Atts)
shifted box sbox(sid-SID,t-T,l-L,Atts)

Table 6.4: Abstract syntax vs. Prolog syntax. Atts stands for possible additional attributes of
the form Name-Value.

8They involved at most 100 objects.

Net-WMS D6.1 page 69 of 83

Net-WMS FP6-034691

6.9 Appendix B: Region Connection Calculus Rules

Region Connection Calculus (RCC-8, [28]) provides eight topological relations (i.e., disjoint,
meet, overlap, equal, covers, coveredby, contains, inside) between two ground objects such that
any two ground objects are in one and exactly one of these topological relations. Fig. 6.11 il-
lustrates the meaning of each topological relation. In this section, we provide the corresponding
rules in our language for these binary relations.

For objects consisting of multiple shifted boxes, the relations can be interpreted in more than
one way. We therefore present two sets of rules: first, unambiguous rules between two shifted
boxes, and then one version of rules between objects.

Figure 6.11: The eight topological relations of RCC-8

Net-WMS D6.1 page 70 of 83

Net-WMS FP6-034691

6.9.1 Rules for RCC-8 Relations between Two Shifted Boxes
origin(O1,S1,D) ---> % origin for object O1, sbox S1, dim D

O1ˆx(D)+S1ˆt(D).

end(O1,S1,D) ---> % end for object O1, sbox S1, dim D
O1ˆx(D)+S1ˆt(D)+S1ˆl(D).

contains_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims , origin(O1,S1,D) #< origin(O2,S2,D) #/\

end(O2,S2,D) #< end(O1,S1,D)).

coveredby_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims , origin(O2,S2,D) #=< origin(O1,S1,D) #/\

end(O1,S1,D) #=< origin(O2,S2,D)
) #/\
exists(D, Dims , origin(O2,S2,D) #= origin(O1,S1,D) #\/

end(O1,S1,D) #= end(O2,S2,D)).

covers_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims , origin(O1,S1,D) #=< origin(O2,S2,D) #/\

end(O2,S2,D) #=< end(O1,S1,D)
) #/\
exists(D, Dims , origin(O1,S1,D) #= origin(O2,S2,D) #\/

end(O1,S1,D) #= end(O2,S2,D)).

disjoint_sboxes(Dims, O1, S1, O2, S2) --->
exists(D, Dims , origin(O1,S1,D) #> end(O2,S2,D) #\/

origin(O2,S2,D) #> end(O1,S1,D)).

inside_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims , origin(O2,S2,D) #< origin(O1,S1,D) #/\

end(O1,S1,D) #< end(O2,S2,D)).

equal_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims , origin(O1,S1,D) #= origin(O2,S2,D) #/\

end(O1,S1,D) #= end(O2,S2,D)).

overlap_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims , end(O1,S1,D) #> origin(O2,S2,D) #/\

end(O2,S2,D) #> origin(O1,S1,D)).

meet_sboxes(Dims, O1, S1, O2, S2) --->
forall(D, Dims,

end(O1,S1,D) #>= origin(O2,S2,D) #/\
end(O2,S2,D) #>= origin(O1,S1,D)) #/\

exists(D, Dims,
end(O1,S1,D) #= origin(O2,S2,D) #\/
end(O2,S2,D) #= origin(O1,S1,D)).Net-WMS D6.1 page 71 of 83

Net-WMS FP6-034691

6.9.2 Rules for RCC-8 Relations between Two Objects

contains_objects(Dims, O1, O2) --->
forall(S1, sboxes([O1ˆsid]),
exists(S2, sboxes([O2ˆsid]),
contains_sboxes(Dims, O1, S1, O2, S2))).

coveredby_objects(Dims, O1, O2) --->
forall(S1, sboxes([O1ˆsid]),
exists(S2, sboxes([O2ˆsid]),
coveredby_sboxes(Dims, O1, S1, O2, S2))).

covers_objects(Dims, O1, O2) --->
forall(S2, sboxes([O2ˆsid]),
exists(S1, sboxes([O1ˆsid]),
covers_sboxes(Dims, O1, S1, O2, S2))).

disjoint_objects(Dims, O1, O2) --->
forall(S1, sboxes([O1ˆsid]),
forall(S2, sboxes([O2ˆsid]),
disjoint_sboxes(Dims, O1, S1, O2, S2))).

inside_objects(Dims, O1, O2) --->
forall(S1, sboxes([O1ˆsid]),
exists(S2, sboxes([O2ˆsid]),
inside_sboxes(Dims, O1, S1, O2, S2))).

equal_objects(Dims, O1, O2) --->
forall(S1, sboxes([O1ˆsid]),
exists(S2, sboxes([O2ˆsid]),
equal_sboxes(Dims, O1, S1, O2, S2))).

overlap_objects(Dims, O1, O2) --->
forall(S1, sboxes([O1ˆsid]),
exists(S2, sboxes([O2ˆsid]),
overlap_sboxes(Dims, O1, S1, O2, S2))).

meet_objects(Dims, O1, O2) --->
forall(S1, sboxes([O1ˆsid]),
exists(S2, sboxes([O2ˆsid]),
meet_sboxes(Dims, O1, S1, O2, S2))).

Net-WMS D6.1 page 72 of 83

Net-WMS FP6-034691

6.10 Appendix C: A Real-Life Problem Instance

This section contains a number of examples of rules encoding a problem instance provided by a
major car manufacturer, involving a 1203× 235× 239 container (with oid 0) and 9 objects (with
oid 1-9) with an extra weight attribute, subject to the following rules:

inside Each object is placed inside the container.

gravity Each object is either on the floor or resting on some other object.

non overlap The objects do not pairwise overlap.

stack weight A heavier object cannot be piled on top of a lighter one.

stack oversize For any two objects in a pile, the overhang can be at most 10 units.

The following rule was not used, for it leads to an over-constrained problem.

wedging All four faces of a box in the horizontal dimensions must lean against a container wall
or against some other box.

Our Prolog implementation solved this problem instance in 1 CPU second and about
1 megabyte of memory. The rules generated 90 k-indexicals with a total of 50140 virtual in-
structions. During the search, the sweep-point kernel was applied 731 times.

General macros.

origin(O1,S1,D) ---> % origin of object O1, sbox S1, dim D
O1ˆx(D)+S1ˆt(D).

end(O1,S1,D) ---> % end of object O1, sbox S1, dim D
O1ˆx(D)+S1ˆt(D)+S1ˆl(D).

soverlap(O1,O2,S1,S2,D) ---> % sboxes overlap in dim D
end(O1,S1,D) #> origin(O2,S2,D) #/\
end(O2,S2,D) #> origin(O1,S1,D).

oversize(O1,O2,S1,S2,D) ---> % overhang between two sboxes
% in dim D

max(max(origin(O1,S1,D),origin(O2,S2,D)) -
min(origin(O1,S1,D),origin(O2,S2,D)),
max(end(O1,S1,D), end(O2,S2,D)) -
min(end(O1,S1,D), end(O2,S2,D))).

Inside rule: O1 is non-strictly inside O2 in all dimensions.

Net-WMS D6.1 page 73 of 83

Net-WMS FP6-034691

inside(O1, O2) --->
forall(S1, sboxes([O1ˆsid]),

exists(S2, sboxes([O2ˆsid]),
origin(O2,S2,1) #=< origin(O1,S1,1) #/\
end(O1,S1,1) #=< end(O2,S2,1) #/\
origin(O2,S2,2) #=< origin(O1,S1,2) #/\
end(O1,S1,2) #=< end(O2,S2,2) #/\
origin(O2,S2,3) #=< origin(O1,S1,3) #/\
end(O1,S1,3) #=< end(O2,S2,3))).

Non-overlap rule: for some dimension, O1 does not overlap O2.

non_overlap(O1, O2) --->
O1ˆoid #< O2ˆoid #=>
forall(S1, sboxes([O1ˆsid]),

forall(S2, sboxes([O2ˆsid]),
#\ soverlap(O1,O2,S1,S2,1) #\/
#\ soverlap(O1,O2,S1,S2,2) #\/
#\ soverlap(O1,O2,S1,S2,3))).

Gravity rule: O1 is either on the floor or sitting on some other object.

gravity(O1, Os) --->
forall(S1, sboxes([O1ˆsid]),

(origin(O1,S1,3) #= 0 #\/
exists(O2,Os,

O1ˆoid#\=O2ˆoid #/\
exists(S2, sboxes([O2ˆsid]),

soverlap(O1,O2,S1,S2,1) #/\
soverlap(O1,O2,S1,S2,2) #/\
origin(O1,S1,3) #= end(O2,S2,3))))).

Stacking rule: O1 heavier than O2⇒ O1 not piled above O2.

stack_weight(O1, O2) --->
O1ˆweight #> O2ˆweight #=>
forall(S1, sboxes([O1ˆsid]),

forall(S2, sboxes([O2ˆsid]),
origin(O1,S1,3) #>= end(O2,S2,3) #=>
#\ soverlap(O1,O2,S1,S2,1) #\/
#\ soverlap(O1,O2,S1,S2,2))).

Overhang rule: for any two objects in a pile, the overhang can be at most 10.

Net-WMS D6.1 page 74 of 83

Net-WMS FP6-034691

stack_oversize(O1, O2) --->
O1ˆoid#\=O2ˆoid #=>
forall(S1, sboxes([O1ˆsid]),

forall(S2, sboxes([O2ˆsid]),
(soverlap(O1,O2,S1,S2,1) #/\
soverlap(O1,O2,S1,S2,2)) #=>

(oversize(O1,O2,S1,S2,1) #=< 10 #/\
oversize(O1,O2,S1,S2,2) #=< 10))).

Wedging rule: all four faces of O1 in dimension X and Y must lean against the container
or against some other box.

wedged(O1,S1,Oc,Sc,Os,D) --->
(origin(O1,S1,D) #= origin(Oc,Sc,D) #\/
exists(O2,Os,

O1ˆoid#\=O2ˆoid #/\
exists(S2, sboxes([O2ˆsid]),

origin(O1,S1,D) #= end(O2,S2,D)))) #/\
(end(O1,S1,D) #= end(Oc,Sc,D) #\/
exists(O2,Os,

O1ˆoid#\=O2ˆoid #/\
exists(S2, sboxes([O2ˆsid]),

end(O1,S1,D) #= origin(O2,S2,D)))).
wedging(O1,Oc,Os) --->

exists(Sc, sboxes([Ocˆsid]),
forall(S1, sboxes([O1ˆsid]),

wedged(O1,S1,Oc,Sc,Os,1) #/\
wedged(O1,S1,Oc,Sc,Os,2))).

Business rules: putting all the rules together.

forall(Box1,objects([1,2,3,4,5,6,7,8,9]),
forall(Container,[objects([0])],inside(Box1,Container)) #/\
gravity(Box1,objects([1,2,3,4,5,6,7,8,9])) #/\
forall(Box2,objects([1,2,3,4,5,6,7,8,9]),

non_overlap(Box1,Box2) #/\
stack_weight(Box1,Box2) #/\
stack_oversize(Box1,Box2))).

Net-WMS D6.1 page 75 of 83

Net-WMS FP6-034691

6.11 Appendix D: A Packing-Unpacking Problem

This section introduces a packing-unpacking problem that takes the space as well as the time
dimensions into account. We have to pack (and unpack) a set of 48 rectangles into a bin. Each
rectangle is present within the bin during a given time interval and the right hand side of the bin
can be used for inserting and deleting rectangles. Beside the fact that, for each time point p, all
rectangles that are present in the bin at instant p should not overlap, we also have a visibility
constraint. This visibility constraint states that, when a rectangle enters (or leaves) the bin, there
should not be any obstacle between the final (initial) position of the rectangle and the right hand
side of the bin (we assume that the rectangle performs a direct translation).

The example illustrates how a packing plan can be obtained for such a packing-unpacking
problem from a solution to a geost constraint problem. The example uses problem dimensions
1-2 for space and 3-5 for time denoting respectively the virtual attributes start, duration, and
completion. We now introduce the visibility constraint.

Definition 5 Given a list OIDs of identifiers of objects of the geost constraint and a observation
place, specified by a dimension Dim (an integer between 1 and k) and a direction Dir (0 or 1),
the visible(OIDs,Dim,Dir) constraint holds if, for all objects o mentioned in OIDs, at least one
surface of each shifted box associated with o is entirely visible from the specified observation
place 〈Dim,Dir〉 at time o.start9 as well as at time o.completion − 1.10

Definition 6 Consider two distinct objects o and o′ of the visible(OIDs,Dim,Dir) constraint
(i.e., o, o′ ∈ OIDs) as well as an observation place defined by the pair 〈Dim,Dir〉. The object
o is masked by the object o′ according to the observation place 〈Dim,Dir〉 if there exist two
shifted boxes s and s′ respectively associated with o and o′ such that conditions A, B, C and D
all hold:

A o.duration > 0 ∧ o′.duration > 0 ∧ o.completion > o′.start ∧ o′.completion > o.start
(i.e., the time intervals associated with O and o′ intersect).

B Discarding dimension Dim, s and s′ intersect in the other dimensions (i.e., objects o and o′

are in vis-à-vis).

C In dimension Dim, o and o′ are ordered in the wrong way according to direction Dir.

D At least one of the two instants respectively corresponding to the start time of o and to the
completion time of o is located within interval [o′.start , o′.completion].

Our Prolog implementation solved this problem instance in 7.5 CPU second and about 2.2
megabytes of memory. The rules generated 1744 k-indexicals with a total of 65456 virtual in-
structions. During the search the sweep-point kernel was applied 4502 times. The result is shown
in Fig. 6.12. The four parts of the figure respectively correspond to the successive states of the
bin (i.e., we have four time intervals):

top Initially, rectangles 1 to 16 enter the bin.
9We assume that all objects for which the start time equals o.start are transparent. This makes sense since: (1)

within the context of pick-up delivery problems all objects loaded (resp. unloaded) at the same place are equivalent;
(2) by enforcing the start time to be distinct (for instance by using an alldifferent constraint on the start variables)
one can impose the objects to be opaque.

10Again, we assume that all objects for which the completion time equals o.completion are transparent.

Net-WMS D6.1 page 76 of 83

Net-WMS FP6-034691

bottom left Later on, rectangles 17 to 32 enter the bin. They are placed into the bin in order not
to block according to the right hand side of the bin, rectangles 1 to 16 which have to leave
earlier.

bottom center Rectangles 1 to 16 leave the container and are replace by rectangles 33 to 48.
Again they are placed in order not to block the exit of rectangles 17 to 32.

bottom right After the exit of rectangles 17 to 32, rectangles 33 to 48 are the only rectangles
left in the bin.

We now give the encoding of the problem.

Shorthands and invariants for space and time.

% end of a rectangle in dimension 1 or 2
origin(O, S, D) ---> Oˆx(D)+Sˆt(D).

% end of a rectangle in dimension 1 or 2
end(O, S, D) ---> Oˆx(D)+Sˆt(D)+Sˆl(D)).

% start time (use dimension 3)
start(O) ---> Oˆx(3).

% duration (use dimension 4)
duration(O) ---> Oˆx(4).

% completion time (use dimension 5)
completion(O) ---> Oˆx(5).

% time attribute invariant: Start+Duration=Completion
start_dur_complete(OIDs) --->

forall(O, objects(OIDs),
start(O)+duration(O) #= completion(O)).

Net-WMS D6.1 page 77 of 83

Net-WMS FP6-034691

Non-overlapping constraints considering both space and time.

overlap(O, S, Oi, Si, D) --->
end(O, S, D) #> origin(Oi, Si, D) #/\
end(Oi, Si, D) #> origin(O, S, D)).

non_overlap(OIDs) --->
forall(O1, objects(OIDs),

forall(S1, sboxes([O1ˆsid]),
forall(O2, objects(OIDs),

O1ˆoid #< O2ˆoid #=>
forall(S2, sboxes([O2ˆsid]),

#\ (overlap(O1, S1, O2, S2, 1) #/\
overlap(O1, S1, O2, S2, 2) #/\
completion(O1) #> start(O2) #/\
completion(O2) #> start(O1)))))).

Visibility rules.

visible(OIDs, Dim, Dir) --->
#\ exists(O, objects(OIDs), masked(OIDs, O, Dim, Dir)).

masked(OIDs, O, Dim, Dir) --->
exists(Oi, objects(OIDs),

Oiˆoid #\= Oˆoid #/\ masked_by(O, Oi, Dim, Dir)).

masked_by(O, Oi, Dim, Dir) --->
exists(S, sboxes([Oˆsid]),

exists(Si, sboxes([Oiˆsid]),
duration(O) #> 0 #/\
duration(Oi) #> 0 #/\
completion(O) #> start(Oi) #/\
completion(Oi) #> start(O) #/\
forall(D, [1,2], D #\= Dim #=> overlap(O, S, Oi, Si, D)) #/\
(Dir #= 0 #=> origin(O, S, Dim) #>= end(Oi, Si, Dim)) #/\
(Dir #= 1 #=> origin(Oi, Si, Dim) #>= end(O, S, Dim)) #/\
(start(O) #> start(Oi) #\/ completion(O) #< completion(Oi)))).

Business rules: putting all the rules together.

start_dur_complete(AllOIDs),
non_overlap(AllOIDs),
visible(AllOIDs, 1, 0).

Net-WMS D6.1 page 78 of 83

Net-WMS FP6-034691

Figure 6.12: Solution to the packing-unpacking problem
Net-WMS D6.1 page 79 of 83

Net-WMS FP6-034691

Net-WMS D6.1 page 80 of 83

Bibliography

[1] J. Allen. Time and time again: The many ways to represent time. International Journal of
Intelligent System, 6(4), 1991.

[2] Krzysztof Apt and Mark Wallace. Constraint Logic Programming using Eclipse. Cam-
bridge University Press, 2006.

[3] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles.
Tom: Piggybacking rewriting on java. In Proceedings of th 18th International Confer-
ence on Rewriting Techniques and Applications, RTA’07, number 4533 in Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[4] N. Beldiceanu, M. Carlsson, E. Poder, R. Sadek, and C. Truchet. A generic geo-
metrical constraint kernel in space and time for handling polymorphic k-dimensional
objects. In C. Bessière, editor, Proc. CP’2007, volume 4741 of LNCS, pages
180–194. Springer, 2007. Also available as SICS Technical Report T2007:08,
http://www.sics.se/libindex.html.

[5] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathl. Comput.
Modelling, 20(12):97–123, 1994.

[6] N. Beldiceanu, P. Flener, and X. Lorca. Combining tree partitioning, precedence,
and incomparability constraints. Constraints Journal, 2008. To appear, available at
http://www.springerlink.com/content/08p0h427w7n22681/.

[7] M. Benedetti, A. Lallouet, and J. Vautard. QCSP made practical by virtue of restricted
quantification. In IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pages 38–43, 2007.

[8] B. Carlson. Compiling and Executing Finite Domain Constraints. PhD thesis, Uppsala
University, 1995.

[9] M. Carlsson et al. SICStus Prolog User’s Manual. Swedish Institute of Computer Science,
release 4 edition, 2007. ISBN 91-630-3648-7.

[10] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver.
In H. Glaser, P. Hartel, and H. Kuchen, editors, Programming Languages: Implementations,
Logics, and Programming, volume 1292 of LNCS, pages 191–206. Springer, 1997.

[11] P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of Logic Program-
ming, 27(3):185–226, 1996.

81

Net-WMS FP6-034691

[12] Maria Garcia de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. The modelling
language Zinc. In Proceedings of the International Conference on Principles and Practice
of Constraint Programming CP’06), pages 700–705. Springer-Verlag, 2006.

[13] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2:1–25, 2006.

[14] François Fages. Consistency of Clark’s completion and existence of stable models. Methods
of Logic in Computer Science, 1:51–60, 1994.

[15] François Fages, Sylvain Soliman, and Rémi Coolen. CLPGUI: a generic graphical user
interface for constraint logic programming. Journal of Constraints, Special Issue on User-
Interaction in Constraint Satisfaction, 9(4):241–262, October 2004.

[16] V. Ganesh, S. Berezin, and D.L. Hill. Deciding presburger arithmetic by model checking
and comparisons with other methods. In Proc. FMCAD’02, volume 2517 of LNCS, pages
171–186. Springer, 2002.

[17] Business Rules Group. The business rules manifesto, 2003. Business Rules Group
http://www.businessrulesgroup.org/brmanifesto.htm.

[18] Rémy Haemmerlé and François Fages. Modules for Prolog revisited. In Proceedings of In-
ternational Conference on Logic Programming ICLP 2006, number 4079 in Lecture Notes
in Computer Science, pages 41–55. Springer-Verlag, 2006.

[19] W. Harvey and P. J. Stuckey. Constraint representation for propagation. In M. Maher and
J.-F. Puget, editors, Proc. CP’98, volume 1520 of LNCS, pages 235–249. Springer, 1998.

[20] P. Van Hentenryck and Y. Deville. The cardinality operator: a new logical connective in
constraint logic programming. In Int. Conf. on Logic Programming (ICLP’91). MIT Press,
1991.

[21] Dieter Hofbauer. Termination proofs by multiset path orderings imply primitive recursive
derivation lengths. Theoretical Computer Science, 105(1):129–140, 1992.

[22] Jinbo Huang and Adnan Darwiche. The language of search. Journal of Artificial Intelli-
gence Research, 29:191–219, 2007.

[23] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the
14th ACM Symposium on Principles of Programming Languages, Munich, Germany, pages
111–119. ACM, January 1987.

[24] Zohar Manna. Lectures on the Logic of Computer Programming. Number 0031 in CBMS-
NSF regional conference series in applied mathematics. SIAM, 1980.

[25] Jakob Puchinger, Peter J. Stuckey, Mark Wallace, and Sebastian Brand. From high-level
model to branch-and-price solution in g12. In Proceedings of CPAIOR’08, Lecture Notes
in Computer Science, Paris, France, 2008. Springer-Verlag.

[26] W. Pugh. The Omega test: a fast and practical integer programming algorithm for depen-
dence analysis. In Supercomputing, pages 4–13, 1991.

Net-WMS D6.1 page 82 of 83

Net-WMS FP6-034691

[27] Reza Rafeh, Maria Garcia de la Banda, Kim Marriott, and Mark Wallace. From Zinc to
design model. In Proceedings of PADL’07, pages 215–229. Springer-Verlag, 2007.

[28] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and connection. In
B. Nebel, C. Rich, and W. R. Swartout, editors, Proc. of 2nd International Conference on
Principles of Knowledge Representation and Reasoning (KR’92), pages 165–176. Morgan
Kaufmann, 1992.

[29] B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160–187, 1973.

[30] G. Tack, C. Schulte, and G. Smolka. Generating propagators for finite set constraints. In
F. Benhamou, editor, Proc. CP’2006, volume 4204 of LNCS, pages 575–589. Springer,
2006.

[31] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

[32] P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(FD). unpub-
lished manuscript, Computer Science Department, Brown University, 1991.

[33] Pascal Van Hentenryck. The OPL Optimization programming Language. MIT Press, 1999.

[34] Pascal Van Hentenryck and Laurent Michel. Constraint-based Local Search. MIT Press,
2005.

[35] Victor Vianu. Rule-based languages. Annals of Mathematics and Artificial Intelligence,
19(1-2):215 – 259, March 1997.

Net-WMS D6.1 page 83 of 83

