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SUMMARY 
 
 
 
This document describes the contribution to the software deliverable D4.2 regarding the 
developpement of the geometrical kernel geost. The geost constraint was integrated within the 
constraint programming platform of EMN (i.e., the CHOCO library), as well as in the 
constraint programming platform of SICS (i.e., SICStus Prolog). 
 
 
 
 
Both versions can be dowloaded from the web : 
 
CHOCO is available from 

 http://choco.emn.fr 
 

while the SICStus version containing geost is available from 
http://www.sics.se/sicstus/products4/sicstus/4.0.2-NETWMS-2/binaries/x86-

linux-glibc2.3/sp-4.0.2-NETWMS-2-x86-linux-glibc2.3.tar.gz 
 
 
 
 
The document is composed of four parts that respectively correspond to : 
 
(Part A) An updated version of the specification of the geometrical kernel that integrates the 
greedy mode of the geometrical kernel. It extends the SICS report T2007-08 (A Generic 
Geometrical Constraint Kernel in Space and Time for Handling Polymorphic k-Dimensional 
Objects). 
 
(Part B) The CHOCO documentation of the geost constraint. 
 
(Part C) The SICStus documentation of the geost constraint. 
 
(Part D) An example of exploitation of the  geost constraint by KLS-Optim. 
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A Generic Geometrical Constraint Kernel in Space and
Time for Handling Polymorphic k-Dimensional Objects

Nicolas Beldiceanu1, Mats Carlsson2, Rida Sadek1, and Mohammed Sbihi1

1 École des Mines de Nantes, LINA FRE CNRS 2729, FR-44307 Nantes, France
{Nicolas.Beldiceanu,Emmanuel.Poder,Rida.Sadek}@emn.fr

2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mats.Carlsson@sics.se

Abstract. This article introduces a generic geometrical constraint kernel for han-
dling the location in space and time of polymorphick-dimensional objects sub-
ject to various geometrical and time constraints. It first describes a reduced set of
standard primitives one has to provide for plugging any new geometrical/temporal
constraint. Based on these primitives, it develops a generic k-dimensional lexi-
cographic sweep-point algorithm for filtering the attributes of an object (i.e., the
coordinates of its origin as well as its start and end in time)according to all con-
straints where the object occurs. Experiments are providedin the context ofin-
clusion andnon-overlapping constraints in dimensions2, 3 and4, both for simple
shapes (i.e., rectangles, parallelepipeds) as well as for more complex shapes.

1 Introduction

This article introduces a global constraintgeost(k,O,S, C) for handling in a generic
way a variety of geometrical constraintsC in space and time between polymorphic
k-dimensional objectsO (k ∈ N

+), each of which taking a shape among a set of shapes
S during a given time interval and at a given position in space.

Each shape fromS is defined as a finite set of shifted boxes, where each shifted box
is described by a box in ak-dimensional space at the given offset with the given sizes.
More precisely ashifted box s = shape(sid , t[], l[]) ∈ S is an entity defined by its shape
id s.sid , shift offsets.t[d], 0 ≤ d < k, and sizess.l[d] (s.l[d] > 0, 0 ≤ d < k). All at-
tributes of a shifted box are integer values. Then, ashape is a collection of shifted boxes
sharing all the same shape id.1 Eachobject o = object(id , sid , x[], start , duration , end)
fromO is an entity defined by its unique object ido.id (an integer), shape ido.sid , ori-
gin o.x[d], 0 ≤ d < k, start in timeo.start , duration in timeo.duration (o.duration ≥
0) and end in timeo.end . 2 All attributessid , x[0], x[1], . . . , x[k − 1], start , duration

1 Note that the shifted boxes associated with a given shape mayor may not overlap. This some-
times allows a drastic reduction in the number of shifted boxes needed to describe a shape.

2 A first reason why the time dimension is treated specially comes from the fact that the
duration attribute may not fixed, which is actually not the case for thesizes of a shifted
box. A second reason to distinguish the time dimension from the geometrical dimensions is
that all geometrical constraints only apply on objects thatintersect in time.



end correspond to domain variables.3 Typical constraints from the list of constraints
C are for instance the fact that a given subset of objects fromO do not pairwise over-
lap or that they are all included within a given bounding box.Constraints of the list of
constraintsC have always two first argumentsAi andOi (followed by possibly some
additional arguments) which respectively specify:

– A list of dimensions (integers between0 andk − 1), or attributes of the objects of
O, or attributes of the shifted boxes ofS the constraint considers.

– A list of identifiers of the objects to which the constraint applies.

Example 1. Assume we have a3-dimensional placement problem involving a set of paral-
lelepipedsP and one subsetP ′ of P , where we want to express the fact that (1) all par-
allelepipeds ofP should not overlap, and (2) no parallelepipeds ofP ′ should be piled.
We have a placement problem wherek = 3. Constraints (1) and (2) respectively corre-
spond tonon-overlapping([0, 1, 2],P) and tonon-overlapping([0, 1],P ′). Within the first
non-overlapping constraint, the argument[0, 1, 2] expresses the fact that we consider a
non-overlapping constraint according to dimensions0, 1 and 2 (i.e., given any pair of paral-
lelepipedsp′ andp′′ of P there should exist at least one dimensiond (d ∈ {0, 1, 2}) where
the projections ofp′ andp′′ on d do not overlap). Similarly, the argument[0, 1] of the second
non-overlapping constraint expresses the fact that, givenany pair of parallelepipedsp′ andp′′ of
P ′, there should exist at least one dimensiond (d ∈ {0, 1}) wherep′ andp′′ do not overlap).

Thegeost constraint is defined in the following way: given a constraint ctr i(Ai,Oi)
from the list of constraintsC between a subset of objectsOi ⊆ O according to the
attributesAi, letMCi denotes the sets of maximum cliques stemming from the objects
of Oi which all overlap in time.4 Thegeost(k,O,S, C) constraint holds if and only if
∀ctr i ∈ C, ∀OMCi

∈MCi : ctr i(OMCi
) holds.

Example 2. Figure 1 presents a typical example of a dynamic two-dimensional placement prob-
lem where one has to place four objects, both in time as well aswithin a given box, so that objects
that overlap in time do not overlap within the box. Parts (A),(B), (C) and (D) respectively repre-
sent the potential shapes associated with the four objects to place, where the origin of each object
is stressed in bold. Part (E) shows the position of the four objects of the example as the time vary,
where the first, second, third and fourth objects were respectively assigned shapes1, 5, 8 and9:

– During the first time interval[2, 9] we have only objectO1 at position(1, 2).
– Then, at instant10 objectsO2 andO3 both appear. Their origins are respectively placed at

positions(2, 1) and(4, 1).
– At instant14 objectO1 disappears and is replaced by objectO4. The origin ofO4 is fixed at

position(1, 1). Finally at instant22 all three objectsO2, O3 andO4 disappear.

The arguments of the correspondinggeost constraint are:

3 A domain variable v is a variable ranging over a finite set of integers denoted bydom(v); let
v andv respectively denote the minimum and maximum possible values forv.

4 In fact these maximum cliques are only used for defining the declarative semantics of thegeost
constraint.
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(A) (B) (C) (D)
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object O1 is assigned shape S1
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Fig. 1. Example with4 objects,9 shapes, onenon-overlapping and oneincluded constraints

geost(2,
[object(1,1,[1,2], 2,12,14),
object(2,5,[2,1],10,12,22),
object(3,8,[4,1],10,12,22),
object(4,9,[1,1],14, 8,22)],

[shape(1,[0,0],[2,1]), shape(1,[0,1],[1,2]), shape(1,[1,2],[3,1]),
shape(2,[0,0],[3,1]), shape(2,[0,1],[1,3]), shape(2,[2,1],[1,1]),
shape(3,[0,0],[2,1]), shape(3,[1,1],[1,2]), shape(3,[2,2],[3,1]),
shape(4,[0,0],[3,1]), shape(4,[0,1],[1,1]), shape(4,[2,1],[1,3]),
shape(5,[0,0],[2,1]), shape(5,[1,1],[1,1]), shape(5,[0,2],[2,1]),
shape(6,[0,0],[3,1]), shape(6,[0,1],[1,1]), shape(6,[2,1],[1,1]),
shape(7,[0,0],[3,2]),
shape(8,[0,0],[2,3]),
shape(9,[0,0],[1,4])],

[non-overlapping([0,1],[1,2,3,4]),included([0,1],[1,2,3,4],[1,1],[5,4])])

Its first argument2 is the number dimensions of the placement space we consider.Its second
and third arguments respectively describe the four objectsand the nine shapes we have. Finally
its last argument gives the list of geometrical constraintsimposed by thegeost constraint: the
first constraint expresses a non-overlapping constraint between the four objects, while the second
constraint imposes the four objects to be located within thebox containing all points(x, y) such
that1 ≤ x ≤ 5 and1 ≤ y ≤ 4. Thegeost constraint holds since the four objects do not both
simultaneously overlap in time and in space and since they are completely included within the
previous box (i.e., see Part (E) of Figure 1).

Within the scope of thegeost(k,O,S, C) constraint, this article presents a filtering
algorithm that adjusts the minimum and maximum value of eachcoordinateo.x[d],

3



0 ≤ d < k of the origin of an objecto ∈ O, adjusts also the minimum and maximum
value of its starto.start , its durationo.duration and its endo.end in time, and finally
prunes its shape variableo.sid . The approach presented in this article offers a number
of advantages:

– The main theoretical advantages are fourfold:
• First, the geometrical kernel makes it possible to integrate new geometrical

constraints as new applications and/or requirements show up. This is achieved
by providing for each geometrical constraint an API withoutknowing any de-
tails about the geometrical kernel. This contrasts with traditional approaches
where one has to come up with a rather involved filtering algorithm for each
global constraint.
• Second, while pruning the attribute of an object, the geometrical kernel takes

direct advantage of all geometrical constraints involvingthat object in order to
perform more deduction. This is a fundamental progress overthe traditional ap-
proach where constraints only co-operate through the domains of their shared
variables.
• Even when we have three or four dimensions, the approach scales well since it

does not rely on building complex multi-dimensional data structure (e.g., like
quadtrees or octrees). It only stores a number of points in the order ofO(m ·k)
wherem is the total number of objects andk is the number of dimensions.
• Even if complex objects could be decomposed into boxes for which one links

the coordinates by external equality constraints this weakens a lot the deduc-
tion process as illustrated by the following example of Figure 2: if the shapes
(see Part (A)) is decomposed into two rectanglesr4 andr5 (see Part (C)) and
if the constraints linking the coordinates of the origins ofr4 andr5 are not in-
tegrated within the sweep process, infeasibility cannot bedirectly derived (see
Part (M)). In contrast our approach allows to detect infeasibility directly by
reasoning only on the coordinates of the origin ofs.

– The main practical advantages are as follows:
• Having k dimensions allows to come up with a single constraint that can be

used for handling general non-overlappingconstraints. This was originally mo-
tivated by a warehouse management problem where both two-dimensional and
three-dimensional sub-problems had to be solved. In the context of three-di-
mensional packing problems having an extra dimension also makes sense for
modelling the fact that we want to assign objects to a truck (in this context we
speak about anassignment dimension – see Part (I) of Figure 3) or the fact that
we do not want to place all the objects since there may simply be not enough
room (in this context we speak about arelaxation dimension).
• Factoring out the description of the shapes from the description of an object

makes sense in a lot of practical problems where a number of instances of the
same shape have to be considered (this is illustrated by Part(J) of Figure 3
where we have five objects but only three shapes: in fact the first, third and
fifth objects correspond to the first shape). This again occurs in the warehouse
management problem that originally motivated the constraint, where a major
car manufacturer has to pack within the same container the parts associated

4
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Fig. 2. Reasoning for detecting the infeasibility of the placementproblem (dashed areas corre-
spond to initially forbidden pairs of values, while grey areas represent forbidden pairs of values
related to some non-overlapping constraints)

5



with 24 instances of the same car model. By doing so we can decrease the
memory requirement (i.e., each complex shape is represented only once), but
we can also reduce the running time of the algorithm as we willsee later on.
• Having a set of potential shapes for an object offers an extramodelling power

for representing directly the fact that objects may rotate (see Part (E) of Figure 3
where objects2 and3 can rotate from90 degrees), or for dealing with tasks for
which the duration depends on the machine where the task is actually assigned
(see Part (C) of Figure 3).
• Having a temporal dimension allows to tackle dynamic placement problems

where objects are moving in time. Consider for instance a pick-up delivery
problem where objects are loaded or unloaded from a truck while visiting dif-
ferent locations. In this context the non-overlapping constraint applies only for
those objects which overlap in time. This is illustrated by Part (J) of Figure 3.

The article is organised as follows. Section 2 provides an overview of placement
problems that can be modelled with thegeost constraint. Section 3 introduces the ter-
minology and notation used throughout this article. Section 4 presents the overall ar-
chitecture of the geometrical kernel. It explains how to define geometrical constraints
in terms of a reduced set of standard primitives that are usedby the geometrical kernel.
Finally, Section 4 describes the set of geometrical constraints currently available. Sec-
tion 5 presents a multi-dimensional lexicographic sweep algorithm used for filtering the
attributes of an object of thegeost constraint. Finally Section 6 shows how to adapt the
sweep kernel to a greedy mode that is fully compatible with search and backtrack.

2 Modelling Problems with the geost Constraint

One advantage of thegeost constraint is that is allows to model directly a large number
of placement problems by using one single global constraint. Figure 3 sketches ten
typical use of thegeost constraint, which all mention thenon-overlapping constraint:

– The first case (A) corresponds to a non-overlapping constraint among three seg-
ments.

– The second, third and fourth cases (B,C,D) correspond to a non-overlapping con-
straint between rectangles where (B) and (C) are special cases where the sizes of all
rectangles in the second dimension are equal to1; this can be interpreted as ama-
chine assignment problem where each rectangle corresponds to a non-pre-emptive
task that has to be placed in time and assigned to a specific machine so that no
two tasks assigned to the same machine overlap in time. In Part (B) the duration of
each task is fixed, while in Part (C) the duration depends on the machine to which
the task is actually assigned. This dependence is expressedby thecompatible con-
straint, which specifies the dependence between the shape variable and the assign-
ment variable of each task.

– The fifth case (E) corresponds to a non-overlapping constraint between rectangles
where each rectangle can have two orientations. This is achieved by associating
with each rectangle two shapes of respective sizesl ·h andh · l. Since their orienta-
tion is not initially fixed, theincluded constraint enforces the three rectangles to be

6



included within the bounding box defined by the origin’s coordinates1, 1 and sizes
8, 3.

– The sixth case (F) corresponds to a non-overlapping constraint between more com-
plex objects where each object is described by a given set of rectangles.

– The seventh case (G) describes a rectangle placement problem where one has to
first assign each rectangle to a strip so that all rectangles that are assigned to the
same strip do not overlap.

– The eighth case (H) corresponds to a non-overlapping constraint between paral-
lelepipeds.

– The ninth case (I) can be interpreted as a non-overlapping constraint between paral-
lelepipeds that are assigned to the same container. The firstdimension corresponds
to the identifier of the container, while the next three dimensions are associated
with the position of a parallelepiped inside a container.

– Finally the tenth case (J) describes a rectangle placement problem over three con-
secutive time-slots: rectangles assigned to the same time-slot should not overlap in
time. We initially start with the three rectangles1, 2 and3. Rectangle3 is no more
present at instant2 (the arrow↓ within rectangle3 at time1 indicates that rectangle
3 will disappear at the next time-point), while rectangle4 appears at instant2 (the
arrow↑ within rectangle4 at time2 denotes the fact that the rectangle4 appears at
instant2). Finally rectangle2 disappears at instant3 and is replaced by rectangle5.

Before continuing, the next section introduces some notation used throughout this
article.

3 Notation

We will be using the following terminology and notation:

Point A point is ak-dimensional coordinate.
Shifted Box A shifted box s is an entity defined by its shape ids.sid, shift offset
s.t[d], 0 ≤ d < k, and sizess.l[d], 0 ≤ d < k. It denotes a box ink-dimensional
space at the given offset with the given sizes.
ShapeA shape is a collection of shifted boxes sharing the same shape id.
Object An object o is an entity defined by its unique object ido.oid, shape ido.sid, and
coordinateso.x[d], 0 ≤ d < k.
RegionA region r in k-dimensional space is defined by its object idr.oid and bound-
ariesr. min[d], r. max[d], 0 ≤ d < k.

Assumev andw are vectors of scalars ofk components. Thenv ← w denotes
the element-wise assignment ofw to v, w + d (w − d) denotes the element-wise ad-
dition of d (−d) to w, min(v, w) (max(v, w)) denotes the element-wise min (max) of
v andw, minlex(v, w) (maxlex(v, w)) denotes the lexicographic min (max) ofv and
w, andw, v ◦ w for ◦ ∈ {<,≤,≥, >} holds if the comparison holds for every ele-
ment. Given a scalard, 0 ≤ d ≤ k − 1, rot(v, d, k) denotes the vector(v[d], v[(d + 1)
mod k], . . . , v[(d − 1) mod k]). Finally, the notationv ≤d

k w denotes the fact that
vectorrot(v, d, k) is lexicographically less than or equal to vectorrot(w, d, k).

7
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2, [object(1,1,[1,2],0,1,1),object(2,2,[2,1],0,1,1),object(3,3,[5,1],0,1,1)],

2, [object(1,1,[1,2],0,1,1),object(2,2,[6,1],0,1,1),object(3,4,[3,1],0,1,1)],

2, [object(1,1,[2,1],0,1,1),object(2,2,[4,2],0,1,1),object(3,3,[8,1],0,1,1)],geost(

geost(

geost(

geost(

geost(

geost(

geost(

(D)

(E)

(F)

(G)

(H)

(I)

(J)

geost(2, [object(1,1,[2,1],0,1,1),object(2,4,[4,3],0,1,1),object(3,5,[7,1],0,1,1)],

2, [object(1,1,[2,1],0,1,1),object(2,2,[4,3],0,1,1),object(3,3,[7,1],0,1,1)],geost(

    [shape(1,[0],[2]),shape(2,[0],[3]),shape(3,[0],[1])],

    [shape(1,[0,0],[2,1]),shape(2,[0,0],[3,1]),shape(3,[0,0],[1,1])],

    [shape(1,[0,0],[2,1]),shape(2,[0,0],[3,1]),
    [shape(3,[0,0],[2,1]),shape(4,[0,0],[3,1]),
    [shape(5,[0,0],[1,1]),shape(6,[0,0],[2,1]),

    [shape(1,[0,0],[2,2]),shape(2,[0,0],[3,2]),shape(3,[0,0],[1,3])],

    [shape(1,[0,0],[2,2]),shape(2,[0,0],[3,2]),shape(3,[0,0],[2,3]),
     shape(4,[0,0],[1,3]),shape(5,[0,0],[3,1])],

    [shape(1,[0,0],[1,2]),shape(1,[1,1],[1,1]),
     shape(2,[0,0],[3,1]),shape(2,[0,1],[1,1]),shape(2,[2,1],[1,1]),
     shape(3,[0,0],[4,1]),shape(3,[2,1],[2,2])],

    [shape(1,[0,0,0],[1,2,2]),shape(2,[0,0,0],[1,3,2]),shape(3,[0,0,0],[1,1,3])],

    [shape(1,[0,0,0],[1,2,3]),shape(2,[0,0,0],[2,2,2]),shape(3,[0,0,0],[2,4,1])],

    [shape(1,[0,0,0,0],[1,1,2,1]),
     shape(2,[0,0,0,0],[1,1,1,1]),
     shape(3,[0,0,0,0],[1,2,2,1])],

    [shape(1,[0,0],[2,1]),shape(2,[0,0],[2,2]),shape(3,[0,0],[1,3])],

    [non−overlapping([0],[1,2,3])] )

    [non−overlapping([0,1],[1,2,3])] )

    [non−overlapping([0,1],[1,2,3]),compatible([sid,2],[1,2,3],[1−1,2−2,3−2,4−3,5−1,6−2])] )

    [non−overlapping([0,1],[1,2,3])] )

    [non−overlapping([0,1],[1,2,3]),included([0,1],[1,2,3],[1,1],[8,3])] )

    [non−overlapping([0,1],[1,2,3])] )

    [non−overlapping([0,1,2],[1,2,3])] )

    [non−overlapping([0,1,2],[1,2,3])] )

    [non−overlapping([0,1,2,3],[1,2,3])] )

    [non−overlapping([0,1],[1,2,3,4,5])] )

(C)
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Fig. 3. Ten typical examples of use of thegeost constraint (ground instances)
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4 Standard Representation of Geometrical Constraints

The key idea is that one has to provide for each kind of geometrical constraint found
in C a reduced set of standard primitives that will be used by the geometric constraint
kernel. But before describing these functions, let us first introduce the notion ofinter-
nal geometrical constraint (as opposed to theexternal geometrical constraints present
in C). Given an external geometrical constraintectr i(Oi) (Oi ⊆ O) and its frame
FRAME [ectr i], one of its objecto ∈ Oi and one potential shapes of o, we associate
with the triple(ectr i, o, s) a number (possibly0 if the constraint is entailed) of internal
geometrical constraints (this is concretely done by providing functionGenInternalCtrs
(ectr i, o, s,FRAME [ectr i]) : (ictrs)). This stems from the fact that external geomet-
rical constraints are usually decomposed into a conjunction of smaller internal geomet-
rical constraints (and to some extend thek-dimensional lexicographic sweep algorithm
presented in next section handles them globally). Internalgeometrical constraints are
also used for representing implicit constraints (such as holes in the domain of the coor-
dinates of the origin of an object) or for representing redundant constraints derived from
external geometrical constraints (such as preventing the formation of too small holes in
the context of non-overlapping constraints when the allowed waste is very small).

The purpose of an internal geometrical constraintictr is to make available to the
geometrical kernel a set of infeasible points for the originof o under the assumption
thato will be assigned shapes and that constraintctr i(Oi) holds. In order to have a
compact representation which can be used efficiently by the geometrical kernel this set
of infeasible points is defined implicitly by providing the following functions:

– LexInfeasible(ictr ,minlex , d, k, o) : (found , p) whenminlex = true (respec-
tively false), returns the smallest (respectively largest) infeasiblelexicographical
point p associated with the internal geometrical constraintictr (according to the
fact that we prune thedth coordinate of the origin of objecto, i.e., the ordering
among the different dimensions isd, (d + 1) mod k, . . . , (d − 1) mod k) com-
patible with the domains of the coordinates of the origin ofo. If no such point
exists,found is set tofalse (otherwisefound is set totrue).

– IsFeasible(ictr ,min, d, k, o, c) : (feasible , f) setsfeasible to true if point c is
feasible according to the internal constraintictr ; if this is not the case, setsfeasible
to false, and computes the forbidden regionf according to the fact that we prune
the minimum (min = true) or the maximum (min = false) value of thedth

coordinate ofo: we first maximise the size off in dimension(d− 1) mod k, then
maximise the size off in dimension(d − 2) mod k and so on until we reach the
most significant dimensiond. Part (A) (respectively Part (B)) of Figure 4 illustrates
the computation of the forbidden regionf in the context ofk = 2 andd = 0
(respectivelyd = 1).

– CardInfeasible(ictr , k, o) : (n) returns an estimation of the numbern of infeasible
points for the origin of objecto under the assumption that constraintictr holds. This
information is used as a heuristics for ordering the internal constraints checked by
the geometrical kernel.

Figure 5 provides the overall architecture of the system. Asillustrated by the figure,
the system is decomposed into three parts respectively handling the external geometrical

9



most significant
dimension

di
m

en
si

on

(A)

(B)

m
os

t s
ig

ni
fic

an
t

di
m

en
si

on
f.max[1]

f.min[1])=c[1]

f.max[0]

f.min[0]=c[0]

f.min[0]=c[0] f.max[0]

f.min[1]=c[1]

f.max[1]

dimension
least significant

le
as

t s
ig

ni
fic

an
t

o.x[0] o.x[0]

o.x[1]

o.x[1]

o.x[0] o.x[0]

o.x[1]

o.x[1]

infeasible points of the largest lexicographical
infeasible point

infeasible largest box f

infeasible largest box f
(forbidden region)

infeasible points of the largest lexicographical
infeasible point

(forbidden region)

infeasible point
smallest lexicographical

internal constraint

smallest lexicographical
infeasible point

internal constraint

Fig. 4. Illustration of an internal geometrical constraint and of how to compute the forbidden re-
gion according to the dimension for which we want to prune (i.e., the most significant dimension)

10



constraints, the internal geometrical constraints and thegeometrical kernel itself. Within
each part, pink boxes represent specific internal or external geometrical constraints that
will be explained in the two next sections, blue boxes represent the services that have
to be provided in order to describe a concrete constraint so that it can be used by the
geometrical kernel, and finally green boxes describe the purpose of the corresponding
services.

We now describe all internal and external geometrical constraints that are currently
available within the constraint kernel. For each internal constraint we provide the set
of functions that was just presented, while for each external constraint we show how to
reformulate it into a set of internal constraints.

4.1 Internal Geometrical Constraints Currently Available

The inbox constraint Theinbox(t, l) constraint (according to an objecto of thegeost

constraint) is an internal constraint which enforces the point o.x to be located inside the
shifted box defined by its shift offsett[d], 0 ≤ d < k, and sizesl[d], 0 ≤ d < k

(i.e.,∀d ∈ [0, k − 1] : t[d] ≤ o.x[d] ≤ t[d] + l[d]− 1).

The outbox constraint Theoutbox(t, l) constraint (according to an objecto of the
geost constraint) is an internal constraint which enforces the point o.x to be located
outside the shifted box defined by its shift offsett[d], 0 ≤ d < k, and sizesl[d],
0 ≤ d < k (i.e.,∃d ∈ [0, k − 1] : o.x[d] < t[d] ∨ o.x[d] > t[d] + l[d]− 1).

4.2 External Geometrical Constraints Currently Available

This section presents all the external geometrical constraints currently available. For
each external constraint we first provide its declarative semantics and then indicate how
to generate its corresponding internal constraints. Each internal constraint defines in an
implicit way a set of forbidden points for the origin of an object in thek-dimensional
space. As we saw in the introduction, an external constrainthas always at least two
arguments that respectively correspond to dimensions and/or attributes of the object
and/or shapes and to the objects (i.e., objects identifiers)for which the constraint apply.
In order to simplify the presentation we assume without lossof generality that all the
dimensions0, 1, . . . , k−1 are mentioned in the first argument of an external constraint.5

The non-overlapping Constraint

Thenon-overlapping (attributes, iobjects) external constraint takes as input a list of
distinct dimensions in{0, 1, . . . , k − 1} and a list of distinct object’s identifiers of the
geost constraint. It enforces the following condition: given twodistinct objectsoi =

5 If this is not the case we can proceed as follows. Assume the external constraint mentions a
subset of dimensionsD ⊆ {0, 1, . . . , k − 1}. Any infeasible pointp according to the dimen-
sions ofD can be extended to a set of infeasible pointsP by taking the Cartesian product of
the coordinates ofp and each interval associated with the domain of the object wecurrently
consider and with the dimensions that do not belong toD.
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PROCEDURE LexInfeasible(inbox(t, l),minlex , d, k, o) : {found , p}
1: in ← true

2: for j ← 0 to k − 1 do
3: if minlex then
4: p[j]← o.x[j] // copy smallest lexicographical point ofo.x to p

5: else
6: p[j]← o.x[j] // copy largest lexicographical point ofo.x to p

7: end if
8: if p[j] < t[j] ∨ p[j] > t[j] + l[j] − 1 then
9: in ← false // outside the box since outside interval associated with dimensionj

10: end if
11: end for
12: if in then
13: for j ← k − 1 downto 0 do
14: j′ ← (j + d) mod k // scan dimensions by increasing order of priority
15: if minlex then
16: if t[j′] + l[j′] ≤ o.x[j′] then
17: p[j′]← t[j′]+ l[j′] // stops when find a dimension where the upper border (+1) of
18: return {true, p} // the box is in the range of thej′th coordinate ofo.x
19: end if
20: else
21: if t[j′]− 1 ≥ o.x[j′] then
22: p[j′]← t[j′]− 1 // stops when find a dimension where the lower border (-1) of
23: return {true, p} // the box is in the range of thej′th coordinate ofo.x
24: end if
25: end if
26: end for
27: return {false, p}
28: else
29: return {true, p}
30: end if

Algorithm 1: When minlex = true (respectivelyminlex = false) returns the
smallest (respectively largest) infeasible lexicographical point p associated with the
inbox(t, l) constraint according to the fact that we prune thedth coordinate of the origin
of objecto. Setfound to true if such a point exits and tofalse otherwise.
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PROCEDURE IsFeasible(inbox(t, l), min, d, k, o, c) : {feasible, f}
1: before ← false // initially no dimensionj′ wherec[j′] < t[j′]
2: after ← false // initially no dimensionj′ wherec[j′] > t[j′] + l[j′]− 1
3: for j ← 0 to k − 1 do
4: j′ ← (j + d) mod k // scan dimensions by decreasing order of priority
5: if min then
6: f. min[j′]← c[j′] // set to thej′th coordinate ofc
7: if c[j′] < t[j′] ∧ ¬before then
8: f. max[j′]← t[j′]− 1 // set to the lower limit of the box minus1
9: before ← true

10: else
11: f. max[j′]← o.x[j′] // set to infinity
12: if c[j′] > t[j′] + l[j′]− 1 then
13: after ← true

14: end if
15: end if
16: else
17: f. max[j′]← c[j′] // set to thej′th coordinate ofc
18: if c[j′] > t[j′] + l[j′]− 1 ∧ ¬after then
19: f. min[j′]← t[j′] + l[j′] // set to the upper limit of the box plus1
20: after ← true

21: else
22: f. min[j′]← o.x[j′] // set to minus infinity
23: if c[j′] < t[j′] then
24: before ← true

25: end if
26: end if
27: end if
28: end for
29: feasible ← ¬(before ∨ after) // feasible is true if c is located
30: return (feasible, f) // within the box depicted byinbox(t, l)

Algorithm 2: Set feasible to true if point c is feasible according to theinbox(t, l)
constraint; if this is not the case, setsfeasible to false, and computes the forbidden
regionf according to the fact that we prune the minimum (min = true) or maximum
(min = false) value of thedth coordinate ofo.

PROCEDURE CardInfeasible(inbox(t, l), k, o) : {n}
1: n← 1 // volume of the domain of the origin ofo
2: for j ← 0 to k − 1 do
3: n← n · (o.x[j] − o.x[j] + 1)
4: end for
5: m← 1 // volume of the intersection between the box and the origin of o

6: for j ← 0 to k − 1 do
7: m← m ·max(0, min(o.x[j], t[j] + l[j]− 1)−max(o.x[j], t[j]) + 1)
8: end for
9: return n−m

Algorithm 3: Returns the numbern of infeasible points for the origin of objecto under
the assumption that theinbox(t, l) constraint holds.
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PROCEDURE LexInfeasible(outbox(t, l),minlex , d, k, o) : {found , p}
1: for j ← 0 to k − 1 do
2: if o.x[j] < t[j] ∨ o.x[j] > t[j] + l[j] − 1 then
3: return {false, p}
4: end if
5: if minlex then
6: p[j]← max(t[j], o.x[j])
7: else
8: p[j]← min(t[j] + l[j]− 1, o.x[j])
9: end if

10: end for
11: return {true, p}

Algorithm 4: When minlex = true (respectivelyminlex = false) returns the
smallest (respectively largest) infeasible lexicographical point p associated with the
outbox(t, l) constraint according to the fact that we prune thedth coordinate of the
origin of objecto. Setfound to true if such a point exits and tofalse otherwise.

PROCEDURE IsFeasible(outbox(t, l),min, d, k, o, c) : {feasible, f}
1: for j ← 0 to k − 1 do
2: if c[j] < t[j] ∨ c[j] > t[j] + l[j] − 1 then
3: return (true, f) // exit since pointc is feasible according to theoutbox constraint
4: end if
5: if min then
6: f. min[j]← c[j] // set to thejth coordinate ofc
7: f. max[j]← min(o.x[j], t[j] + l[j]− 1) // set to thejth upper limit ofoutbox(t, l)
8: else
9: f. max[j]← c[j] // set to thejth coordinate ofc

10: f. min[j]← max(o.x[j], t[j]) // set to thejth lower limit of outbox(t, l)
11: end if
12: end for
13: return (false, f)

Algorithm 5: Set feasible to true if point c is feasible according to theinbox(t, l)
constraint; if this is not the case, setsfeasible to false, and computes the forbidden
regionf according to the fact that we prune the minimum (min = true) or maximum
(min = false) value of thedth coordinate ofo.

PROCEDURE CardInfeasible(outbox(t, l), k, o) : {n}
1: n← 1
2: for j ← 0 to k − 1 do
3: n← n · (min(o.x[j], t[j] + l[j]− 1)−max(o.x[j], t[j]) + 1)
4: end for
5: return n

Algorithm 6: Returns an estimation about the numbern of infeasible points for the
origin of objecto under the assumption that theoutbox(t, l) constraint holds.
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object(id i, sid i, xi[], start i, duration i, end i) andoj = object(id j , sid j , xj [], start j ,

durationj , end j) (id i, id j ∈ iobjects) such that both objects overlap in time
(i.e., end i > startj ∧ end j > start i ∧ duration i · durationj > 0), no shifted
box si = shape(sid i, ti[], li[]) (with shape identifiersid i) should overlap any shifted
box sj = shape(sid j , tj [], lj []) (with shape identifiersid j) (i.e., ∃d ∈ [0, k − 1] :
oi.xi[d] + si.ti[d] + si.li[d] ≤ oj .xj [d] + sj .tj [d] ∨ oj .xj [d] + sj .tj [d] + sj .lj [d] ≤
oi.xi[d]+ si.ti[d]∨si.li[d] · sj .lj [d] = 0). Before describing the internal constraints as-
sociated with thenon-overlapping constraint, we must first define the notion ofrelative
forbidden regions and ofabsolute forbidden regions.

4.2.3.1 Forbidden Regions

Let line(x, l) denote a line segment with originx and lengthl. Two line segments with
fixed boundariesline(x, l) respectivelyline(x′, l′) overlap if and only if

x + l > x′ ∧ x′ + l′ > x (1)

Suppose now thatx′ varies over the interval[x′, x′]. Then if line(x, l) overlaps with
both line(x′, l′) and line(x′, l′), then line(x, l) also overlaps withline(y, l′) for any
valuex′ < y < x′. From (1) we get thatline(x, l) overlaps with bothline(x′, l′) and
line(x′, l′) if and only if:

x + l > x′ ∧ x′ + l′ > x ∧ x + l > x′ ∧ x′ + l′ > x

which simplifies to:
x′ + l′ > x ∧ x + l > x′

i.e.:
x ∈ [x′ − l + 1, x′ + l′ − 1] (2)

We call the interval in the right hand side of (2) theforbidden region of line(x, l) wrt.
line(x′, l′), i.e. the set of valuesV such that ifx ∈ V then for any valuex′ in its interval,
the two lines will overlap.

Note that the forbidden region does not depend onx, but does depend onl in its
left boundary. For purposes of factoring out parts of the computation, we introduce the
notionrelative forbidden region of line(x′, l′) as the interval[x′ + 1, x′ + l′ − 1]. That
is, it does not depend online(x, l) at all (i.e., in fact it assumes thatline(x, l) is reduced
to a single point,l = 0).

The notion of (relative) forbidden region generalises naturally to k dimensions, de-
noting a region where the origin of an object cannot be placedwithout causing it to
overlap with some other object.

4.2.3.2 Generating the Internal Constraints Associated with the non-overlapping

Constraint

Within the filtering algorithms, the function RelForbReg(iobjects ,S)
computes the setR of all relative forbidden regions. The procedure
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InitFrameExternalConstraint(non-overlapping (attributes, iobjects),O,S) calls
the functionRelForbReg(iobjects ,S). InitFrameExternalConstraint is called each
time we wake thegeost constraint (see line 5 of procedureFilterCtrs).

RelForbReg(iobjects ,S) =
{

r

∣

∣

∣
∃o ∈ iobjects ∧ ∃s ∈ S ∧ s.sid ∈ dom(o.sid)∧

r.oid = o.oid∧
r. min = o.x + s.t + 1∧

r. max = o.x + s.t + s.l − 1
}

AbsForbReg(o, R,S) =
{

r′
∣

∣

∣
∃r ∈ R ∧ ∃s ∈ S ∧ s.sid = o.sid∧

r′.oid = r.oid 6= o.oid∧
r′. min = r. min−s.t− s.l∧
r′. max = r. max−s.t∧

dom(o.x) ∩ r′ 6= ∅
}

The functionAbsForbReg(o, R,S) computes the set of relevant forbidden regions,
associated with each object and the shifted boxes belongingto its potential shapes, for
a given objecto. To each relevant forbidden region corresponds anoutbox constraint.
When we try to filter the coordinates of an objecto, the functionAbsForbReg(o, R,S)
is called by GenInternalCtrs(non-overlapping(attributes , iobjects), o,O,S,

FRAME ) for computing the absolute forbidden regions ofo according to all other
objects and generate the correspondingoutbox constraints (see line 6 of procedure
FilterObj).

5 The Geometrical Kernel: a Generick-Dimensional
Lexicographic Sweep Algorithm

This section first presents the sweep algorithm used for filtering the co-ordinates of the
origin of an object of thegeost constraint, then shows how to extend the algorithm in
order to prune the origin, duration and end attributes of an object. Finally it shows how
to control the sweep algorithm in order to rapidly find a solution or a relaxed solution.

5.1 The Sweep Algorithm

This algorithm first considers all internal geometrical constraintsICo derived fromC
whereo actually occurs, and then performs a recursive traversal ofthe placement space
for each coordinate, each direction (i.e.,min or max) and each potential shapes ∈
dom(o.sid). Without loss of generality, assume we want to adjust the minimum value
of thedth coordinateo.x[d] 0 ≤ d < k of the origin ofo according to the hypothesis that
the shape ofo is fixed tos. The algorithm starts its recursive traversal of the placement
space at point

c = rot(o.x, d, k) = (o.x[d], o.x[(d + 1) mod k], . . . , o.x[(d− 1) mod k])
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and could in principle explore all points of the domains ofo.x, one by one, in in-
creasing lexicographic order, until a point is found that isnot infeasible for any internal
constraint, in which casec[0] is the computed lower bound. To make the search effi-
cient, instead of moving each time to the successor point, wearrange the search so that
it skips points that are known to be infeasible for some internal constraint.6

Example 3. To illustrate the idea on a 2-D case, consider Figure 8. Suppose that both coordinates
(x, y) range over[2, 6] and that we have two sets of infeasible points correspondingto rectangular
regionsr1 andr2:

r1. min = (2, 2), r1. max = (3, 4)

r2. min = (1, 4), r2. max = (4, 6)

Let us simulate a search for a point that is not insider1 or r2.

1. Initialise. We start at the minimal value of the coordinates.(x, y)← (2, 2).
2. Check and move.(x, y) ∈ r1, and the next point that is outsider1 is (2, 5), so(x, y) ←

(2, 5).
3. Check and move.(x, y) ∈ r2, and the next point after that is outsider2 is (2, 7), which is

outside the coordinate domain. So now we know that there is nofeasible point forx = 2.
We also know that the forbidden regions encountered during the search wherex = 2 cover
all points forx = 3 as well. So(x, y) ← (4, 2), the next point that is inside the coordinate
domain and not yet known to be in any forbidden region.

4. Check.(x, y) 6∈ r1, (x, y) 6∈ r2, and we are done.
⊓⊔

1

6

5

4

3

2

1

65432

Fig. 8. Search for a feasible point

Thus we compute the lexicographically smallest pointc′ such that:

1. c′ is lexicographically greater than or equal toc,

6 Potential holes in the domains are reflected in internal constraints.
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2. every element ofc′ is in the range of the corresponding element ofo.x (i.e.,o.x ≤
c′ ≤ o.x),

3. c′ is not infeasible according to the current status of any internal geometrical con-
straint ofICo.

If no suchc′ exists, we remove from the shape variable ofo.sid the values that was our
current hypothesis for the shape ofo (and fail if s was the only possible value foro.sid ).
Otherwise the minimum value ofo.x[d] is adjusted to the most significant element ofc′

(i.e.,c′[0] is the computed lower bound).
As we saw our sweep algorithm moves in increasing lexicographic order a point

c from its lexicographically smallest potential feasible position to its lexicographically
largest potential feasible position through all potentialpoints. The algorithm uses the
following two data structures:

– A data structure called thesweep-point status, which contains some information
related to the current positionc of the sweep-point:
• All internal constraints from ICo that can potential interact with

the current position of the sweep-pointc (i.e., the set of active
internal constraints). This corresponds to all internal constraints
ictro ∈ ICo such thatLexInfeasible(ictr o, true, d, k, o) ≤lex c ≤lex

LexInfeasible(ictro, false, d, k, o).
• A vectorn[0..k − 1] that caches knowledge about already encountered sets of

infeasible points while movingc from its first potential feasible position. The
vectorn is always element-wise greater thanc and maintained as follows. Let
inf, sup denote the vectorsinf = rot(o.x, d, k) andsup = rot(o.x + 1, d, k):
∗ Initially, n = sup.
∗ Whenever a set of infeasible pointsf such thatc ∈ f is found,n is updated

by taking the element-wise minimal value ofn and the end coordinate
of rot(f, d, k), indicating the fact that new candidate points can be found
beyond that value.
∗ Whenever we skip to the next candidate point, we reset the elements ofn

that were used to the corresponding values ofsup.
The following invariant holds for the vectorn, and is used when advancingc

to the next candidate point. Leti be the smallestj such that

n[j + 1] = sup[j + 1] ∧ · · · ∧ n[k − 1] = sup[k − 1]

and supposec is known to be in some set of infeasible points. Then the next
point, lexicographically greater thanc and not yet known to be in any set of
infeasible points, is:

(c[0], . . . , c[i− 1], n[i], inf[i + 1], . . . , inf[k − 1])

– A data structure named theevent point series, which holds the events to process, or-
dered in lexicographically increasing order. These eventscorrespond to the lexico-
graphically smallest pointLexInfeasible(ictr o, true, d, k, o) associated with each
internal constraintictro ∈ ICo. These events are stored in a heap so that we can
extract them in lexicographically increasing order.
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Example 4. Figure 9 illustrates thek-dimensional lexicographic sweep algorithm in the context
of k = 2. Parts (A) and (B) provide the variables of the problem (i.e., the abscissa and ordi-
nate of each rectangler1, r2, r3, r4 andr5) as well as the non-overlapping constraint between
the five previous rectangles. On Parts (D) to (L) we have represented the extreme possible feasi-
ble positions of each rectangle (i.e., rectanglesr1 to r4): for instance the leftmost lower corner
of rectangler1 can only be fixed at positions(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2),
(3, 3), (3, 4), (4, 2), (4, 3) and(4, 4). Parts (C) to (L) of Figure 9 detail the different steps of
the algorithm for adjusting the minimum value of the abscissa of rectangler5. Part (C) provides
the internal constraints associated with the fact that we want to prune the coordinates ofr5: con-
straintsctr1, ctr2, ctr3 andctr 4 respectively correspond to the fact that rectangler5 should
not overlap rectanglesr1, r2, r3 andr4, while constraintctr5 represents the fact that the ordi-
nate ofr5 should be different from7. Each of these five internal constraints corresponds to an
outbox([ox, sx], [oy , sy]) constraint enforcing that the two conditionsx5 ∈ [ox, ox + sx − 1]
andy5 ∈ [oy , oy + sy − 1] are not both true. Part (D) represents the initialisation phase of the
algorithm where we have inserted into the heap all five internal constraints with their respective
lexicographically smallest feasible point (i.e.,(1, 1) for ctr1, (1, 3) for ctr2, (1, 7) for ctr5,
(1, 8) for ctr3 and(3, 1) for ctr 4). Part (E) represents the first step of the sweep-point algorithm
where we start the traversal of the placement space at pointc = (1, 1). We first transfer from the
heap to the list of active internal constraints all internalconstraints for which the first lexicograph-
ically smallest infeasible point if lexicographically greater than or equal to the current position
of the sweep-pointc = (1, 1) (i.e., constraintctr1 = outbox([1, 2], [1, 2])). We then search
through the list of active constraints (represented on the figure by a box with the legend ACTRS
on top of it) the first constraint for whichc = (1, 1) is infeasible. In fact, sincectr1 is infeasible
(represented on the figure by a box with the legend CONFLICT ontop of it) we compute the
feasible vectorf = (3, 3) that tells how to get the next feasible point in the differentdimensions.
Consequently the sweep-point moves to the next position(1, 3) (see Part (F)) and the process is
repeated until we finally find a feasible sweep-point for all internal constraints (i.e., point(3, 8)
in Part (L)). Observe that, when the lexicographically largest infeasible point associated with an
active internal constraint is lexicographically strictlyless than the position of the sweep-point,
we remove that constraint from the list of active internal constraints. This is for instance the case
in Part (I), where we remove constraintctr3 from the list of active internal constraints (i.e., since
its lexicographically largest infeasible point(2, 8) is lexicographically smaller than the position
of the sweep-pointc = (3, 1)).

Algorithms 7 through 12 implement this idea. The algorithmsprune the bounds
of each coordinate of every object wrt. its relevant internal constraints, iterating to
fix-point. Given a pointc and a list of active internal constraintsACTRS , Algorithm 7
looks for an internal constraintictr of ACTRS such that the pointc is infeasible for
constraintictr . If such a constraint can be found, Algorithm 7 returns the corresponding
forbidden regionf . Algorithm 8 filters all objects according to all external geometrical
constraints where they are currently involved. It consistsof a first phase that initialises
for each geometrical constraint and for its objects a data structure describing this ob-
ject versus that constraint. A second phase tries to prune all objects. In order to reach a
fix-point, the process is started again until no pruning occurs anymore.

5.2 Handling Time

Given an objectoi = object(id , sid , o[], start , duration , end) of a geost constraint,
the sweep-point algorithm that we have introduced in the previous section can be easily
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Fig. 9. Illustration of the sweep algorithm for adjusting the minimum value of the abscissa of
rectangler5
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PROCEDURE GetFR(d, k, o, c,ACTRS , increase) : {bool, region}
1: if increase then
2: if ∃ictr ∈ ACTRS | (false, f) = IsFeasible(ictr , true, d, k, o, c) then
3: return (true, f)
4: else
5: return (false, f)
6: end if
7: else
8: if ∃ictr ∈ ACTRS | (false, f) = IsFeasible(ictr , false, d, k, o, c) then
9: return (true, f)

10: else
11: return (false, f)
12: end if
13: end if

Algorithm 7: Is a pointc infeasible according to any currently active internal geometri-
cal constraints (i.e., the internal constraints ofACTRS )? We currently try to prune the
minimum (increase = 1) or the maximum (increase = 0) of o.x[d].

PROCEDURE FilterCtrs(k,O,S ,C) : bool
1: nonfix ← true // fix-point not yet reached
2: while nonfix do
3: nonfix ← false // assumes no filtering will be done
4: for all ectr ∈ C do
5: FRAME [ectr ]← InitFrameExternalConstraint(ectr ,O,S)
6: end for
7: for all o ∈ O do
8: if ¬FilterObj(k, o,FRAME ,S) then
9: return false // no feasible origin

10: else ifo.x was prunedthen
11: nonfix ← true // has to saturate once again
12: end if
13: end for
14: end while
15: return true // feasible origin

Algorithm 8: Main filtering algorithm associated with thegeost(k,O,S, C) constraint,
wherek, O, S andC respectively correspond to the number of dimensions, to theob-
jects, to the shapes and to the external geometrical constraints.
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PROCEDURE FilterObj(k, o, FRAME ,S) : bool
1: ICTRS ← ∅ // build the list of internal constraints attached too

2: for d← 0 to k − 1 do
3: ICTRS ← ICTRS

S

possible outbox constraints corresponding to holes ofo.x[d]
// holes correspond to adjacent forbidden values ofdom(o.x[d])

4: end for
5: for all external geometrical constraintsectr involving o do
6: ICTRS ← ICTRS

S

GenInternalCtrs(ectr , o,O,S ,FRAME [ectr ])
7: end for
8: for d← 0 to k − 1 do
9: if ¬PruneMin(o, d, k, ICTRS) ∨ ¬PruneMax(o, d, k, ICTRS) then

10: return false // no feasible origin
11: end if
12: end for
13: return true // feasible origin

Algorithm 9: Filtering all thek coordinates of a given objecto according to all exter-
nal geometrical constraints whereo occurs;FRAME [ectr ] corresponds to a possible
frame associated with an external constraint, whileS is the set of shapes of thegeost
constraint.

PROCEDURE NewPruneMin(o, d, k, ICTRS) : bool
1: b← true // b = true while we have not failed
2: c← o.x // initial position of the point
3: n← o.x + 1 // upper limits+1 in the different dimensions
4: (infeasible, f)← GetFR(d, k, o, c, ICTRS , true)
5: while b ∧ infeasible do
6: n← min(n, f. max +1)
7: (c, n, b)← AdjustUp(c, n, o, d, k)
8: (infeasible, f)← GetFR(d, k, o, c, ICTRS , true)
9: end while

10: if b then
11: o.x[d]← c[d]
12: end if
13: return b

Algorithm 10: Adjusting the lower bound of thedth coordinate of the origin of object
o; ICTRS is the set of internal constraints associated with objecto.
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PROCEDURE PruneMin(o, d, k, ICTRS) : bool
1: b← true // b = true while we have not failed
2: c← o.x // initial position of the point
3: n← o.x + 1 // upper limits+1 in the different dimensions

// insert within the heap all internal constraints ofICTRS

// and sort them on their smallest infeasible pointm according to the pruning dimensiond
4: HEAP ← empty
5: for all ictr ∈ ICTRS do
6: (found , m)← LexInfeasible(ictr , true, d, k, o)
7: if found then
8: InsertInMinHeap(HEAP , ictr , m) // insert only if at least one infeasible point
9: end if

10: end for
// transfer from the heap to the list of active internal constraints

11: ACTRS ← empty // all internal constraints that can interfere with the position ofc
12: while NonEmptyHeap(HEAP) ∧ SmallestElemHeap(HEAP) ≤d

k c do
13: ACTRS ← ACTRS

S

GetAndRemoveSmallestElemHeap(HEAP)
14: end while

// check if there is an active constraint for whichc is infeasible
// if this is actually the case,f will contain the forbidden region that allows to jump

15: (infeasible, f)← GetFR(d, k, o, c, ACTRS , true)
16: while b ∧ infeasible do
17: n← min(n, f. max +1) // updating the vectorn according tof
18: (c, n, b)← AdjustUp(c, n, o, d, k) // update position of pointc to check
19: remove from ACTRS all internal constraints ictr |c >d

k

LexInfeasible(ictr , false, d, k, o)
// and possibly transfer new internal constraints that interfere with the new position ofc

20: while NonEmptyHeap(HEAP) ∧ SmallestElemHeap(HEAP) ≤d
k c do

21: ACTRS ← ACTRS
S

GetAndRemoveSmallestElemHeap(HEAP)
22: end while
23: (infeasible, f)← GetFR(d, k, o, c,ACTRS , true) // check again ifc is infeasible
24: end while
25: if b then
26: o.x[d]← c[d]
27: end if
28: return b

Algorithm 11: Adjusting the lower bound of thedth coordinate of the origin of object
o; ICTRS is the set of internal constraints associated with objecto.
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PROCEDURE AdjustUp(c, n, o, d, k) : (int[], int[], bool)
1: for j ← k − 1 downto 0 do
2: j′ ← (j + d) mod k // rotation wrt.d, k

3: c[j′]← n[j′] // use vectorn to jump
4: n[j′]← o.x[j′] + 1 // reset component ofn to maximum value
5: if c[j′] ≤ o.x[j′] then
6: return (c, n, true) // candidate point found (since did not exceed upper limit)
7: else
8: c[j′]← o.x[j′] // since exhausted a dimension reset component ofc

9: end if
10: end for
11: return (c, n, false) // no candidate point found

Algorithm 12: Moving up to the next feasible point

adapted in order to handle the start in timeoi.start , duration in timeoi.duration and
end in timeoi.end . Beside maintaining bound consistency for the constraintoi.end =
oi.start + oi.duration , we add an extratime dimension to the geometric coordinates of
objectoi: when we adjust the minimum or maximum value of a geometric coordinate
of oi or when we adjust the minimum value ofoi.start (CASE 1) we set this new
time coordinate tooi.start . Otherwise, when we want to adjust the maximum value of
oi.end (CASE 2), we set this extra time coordinate tooi.end . Now, in the context of
CASE 1, each time we need to compute the set of infeasible points for the coordinates
of oi according to a second objectoj we first compute the set of time-pointsTij for
the start ofoi, so that if the start in time ofoi is fixed to a value ofTij , oi andoj

overlap in time. The set of pointsTij corresponds to the points of interval[oj .start −
oi.duration + 1, oj .end − 1]. If this interval is empty, then the set of infeasible points
for the coordinates ofoi according tooj is empty. In the context of CASE 2, each time
we need to compute the set of infeasible points for the coordinates ofoi according to
a second objectoj , we first compute the set of time-points for the end ofoi, so that
if the end in time ofoi is fixed to one of these time-points,oi andoj overlap in time.
As before if this set is empty, then the set of infeasible points for the coordinates ofoi

according tooj is empty.
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PROCEDURE PruneMax(o, d, k, ICTRS) : bool
1: b← true // b = true while we have not failed
2: c← o.x // initial position of the point
3: n← o.x− 1 // lower limits-1 in the different dimensions

// insert within the heap all internal constraints ofICTRS

// and sort them on their largest infeasible pointm according to the pruning dimensiond
4: HEAP ← empty
5: for all ictr ∈ ICTRS do
6: (found , m)← LexInfeasible(ictr , false, d, k, o)
7: if found then
8: InsertInMaxHeap(HEAP , ictr , m) // insert only if at least one infeasible point
9: end if

10: end for
// transfer from the heap to the list of active internal constraints

11: ACTRS ← empty // all internal constraints that can interfere with the position ofc
12: while NonEmptyHeap(HEAP) ∧ LargestElemHeap(HEAP) ≥d

k c do
13: ACTRS ← ACTRS

S

GetAndRemoveLargestElemHeap(HEAP)
14: end while

// check if there is an active constraint for whichc is infeasible
// if this is actually the case,f will contain the forbidden region that allows to jump

15: (infeasible, f)← GetFR(d, k, o, c, ACTRS , false)
16: while b ∧ infeasible do
17: n← max(n, f. min−1) // updating the vectorn according tof
18: (c, n, b)← AdjustDown(c, n, o, d, k) // update position of pointc to check
19: remove from ACTRS all internal constraints ictr |c <d

k

LexInfeasible(ictr , true, d, k, o)
// and possibly transfer new internal constraints that interfere with the new position ofc

20: while NonEmptyHeap(HEAP) ∧ LargestElemHeap(HEAP) ≥d
k c do

21: ACTRS ← ACTRS
S

GetAndRemoveLargestElemHeap(HEAP)
22: end while
23: (infeasible, f)← GetFR(d, k, o, c,ACTRS , false) // check again ifc is infeasible
24: end while
25: if b then
26: o.x[d]← c[d]
27: end if
28: return b

Algorithm 13: Adjusting the upper bound of thedth coordinate of the origin of object
o; ICTRS is the set of internal constraints associated with objecto.
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PROCEDURE AdjustDown(c, n, o, d, k) : (int[], int[], bool)
1: for j ← k − 1 downto 0 do
2: j′ ← (j + d) mod k // rotation wrt.d, k

3: c[j′]← n[j′] // use vectorn to jump
4: n[j′]← o.x[j′]− 1 // reset component ofn to minimum value
5: if c[j′] ≥ o.x[j′] then
6: return (c, n, true) // candidate point found (since not under lower limit)
7: else
8: c[j′]← o.x[j′] // since exhausted a dimension reset component ofc

9: end if
10: end for
11: return (c, n, false) // no candidate point found

Algorithm 14: Moving down to the next feasible point
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6 Support for Greedy Assignment within thegeost Kernel

6.1 Motivation and Functionality Description

Since, for performance reasons7, the geost kernel offers a mode where it tries to fix
all objects during one single propagation step, we provide away to specify a preferred
order on how to fix all the objects8 in one single propagation step.9 This is achieved by:

– Fixing the objects according to the order they were passed tothegeost kernel.
– When considering one object, fixing its shape variable as well as its coordinates:
• According to an order on these variables that can be explicitly specified.
• A value to assign that can either be the smallest or the largest value, also spec-

ified by the user.
This is encoded by a term that has exactly the same structure as the term asso-
ciated to an object ofgeost . The only difference consists of the fact that a vari-
able is replaced by an expression,10 min(I) (respectively,max(I)), whereI is
a strictly positive integer. The meaning is that the corresponding variable should
be fixed to its minimum (respectively maximum value) in the order I. We can
in fact give a list of vectorsv1, v2, . . . , vp in order to specify how to fix objects
o1+p·α, o2+p·α, . . . , op+p·α. This is illustrated by Figure 10: for instance, Part (I)
specifies that we alternatively (1) fix the shape variable of an object to its max-
imum value (i.e., by usingmax(1)), fix the x-coordinate of an object to its its
minimum value (i.e., by usingmin(2)), fix the y-coordinate of an object to its its
minimum value (i.e., by usingmin(3)) and (2) fix the shape variable of an object
to its maximum value (i.e., by usingmax(1)), fix the x-coordinate of an object
to its its maximum value (i.e., by usingmax(2)), fix the y-coordinate of an ob-
ject to its its maximum value (i.e., by usingmax(3)). In the example associated
with Part (I) we successively fix objectso1, o2, o3, o4, o5, o6 by alternatively us-
ing strategies (1) (i.e.,object( , max(1), x[min(2), min(3)]) and (2) (i.e., vector
object( , max(1), x[max(2), max(3)]).

From an implementation point of view the main modification11 consists of modifying
lines 8 and 9 ofFilterObj (see Algorithm 9) in order to follow the ordering imposed
by the list of vectorsv1, v2, . . . , vp. This is detailed in the next section.

7 Experiments have shown that this allows to reduce significantly, both the time and the memory
consumption.

8 This is only a preference that the kernel may not completely follow for implementation or per-
formance reasons. For instance, as we will see in the next section, the current implementation
fix always the shape variable first.

9 This is in fact not incompatible from using specific heuristics: at each choice point of the
search space the idea is to first try to fixes every object within one single propagation step and,
if this leads to failure, propagate and use the specific heuristics written in Java or in Prolog
depending on the constraint system you are using.

10 The characterdenotes the fact that the corresponding attribute is irrelevant, since for instance,
we know that it is always fixed.

11 Beside fixing the shape variable.
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Fig. 10.Illustration of possible heuristics for fixing all objects within one single propagation step
and their corresponding parameters in the context of two dimensions.
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6.2 Implementation

The greedy algorithm for fixing an objecto is controlled by a vectorv of lengthk + 1
such that:

– The shape variableo.sid should be set to its minimum possible value ifv[0] < 0,
and to its maximum possible value otherwise.

– abs(v[1]) − 2 is the most significant dimension (the one that varies the slowest)
during the sweep. The values are tried in ascending order ifv[1] < 0, and in de-
scending order otherwise.

– abs(v[2])−2 is the next most significant dimension, and its sign indicates the value
order, and so on.

For example, a termobject(_,min(1),[max(3),min(4),max(2)]) is
encoded as the vector[−1, 4, 2,−3].

PROCEDURE FixAllObjs(k,O,S , C, v) : bool
1: for all ectr ∈ C do
2: FRAME [ectr ]← InitFrameExternalConstraint(ectr ,O,S)
3: end for
4: for all o ∈ O do
5: if ¬FixObj(k, o,FRAME ,S , v) then
6: return false

7: else
8: for all external geometrical constraintsectr involving o do
9: FRAME [ectr ]← InitFrameExternalConstraint(ectr ,O,S) // update the

relative forbidden regions
10: end for
11: end if
12: end for
13: return true

Algorithm 15: Fixing all the objects, wherek, O, S andC, v respectively correspond
to the number of dimensions, to the objects, to the shapes, tothe external geometrical
constraints and to the controlling vector. Within the context of the greedy mode, this al-
gorithm replaces Algorithm 8 (i.e.,FilterCtrs) that is used in the standard propagation
mode.
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PROCEDURE FixObj(k, o,FRAME ,S , v) : bool
1: if v[0] < 0 then
2: o.sid← o.sid

3: else
4: o.sid← o.sid

5: end if
6: ICTRS ← ∅ // build the list of internal constraints attached too

7: for d← 0 to k − 1 do
8: ICTRS ← ICTRS

S

possible outbox constraints corresponding to holes ofo.x[d]
// holes correspond to adjacent forbidden values ofdom(o.x[d])

9: end for
10: for all external geometrical constraintsectr involving o do
11: ICTRS ← ICTRS

S

GenInternalCtrs(ectr , o,O,S ,FRAME [ectr ])
12: end for
13: return PruneFix(o, d, k, ICTRS , v[1..k]) // we pass the vectorv[1..k] since we have to

remove position0 which corresponds to the shape id

Algorithm 16: Fixing all thek coordinates of a given objecto according to all external
geometrical constraints whereo occurs;FRAME [ectr ] corresponds to a possible frame
associated with an external constraint;S is the set of shapes of thegeost constraint;v
is the controlling vector.
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PROCEDURE PruneFix(o, k, ICTRS , v) : bool
1: for d← k − 1 downto 0 do
2: d′ ← abs(v[d])− 2
3: if v[d] < 0 then
4: c[d′]← o.x[d′] // initial position of the point

5: n[d′]← o.x[d′] + 1 // initial next feasible pos
6: else
7: c[d′]← o.x[d′] // initial position of the point
8: n[d′]← o.x[d′]− 1 // initial next feasible pos
9: end if

10: end for
11: (infeasible, f)← GetFR(abs(v[0]) − 2, k, o, c, ICTRS , true)
12: while infeasible do
13: for d← k − 1 downto 0 do
14: d′ ← abs(v[d]) − 2
15: if v[d] < 0 then
16: n[d′]← min(n[d′], f. max[d′] + 1) // update next feasible pos wrt.f

17: else
18: n[d′]← max(n[d′], f. min[d′]− 1) // update next feasible pos wrt.f

19: end if
20: end for
21: for d← k − 1 downto 0 do
22: d′ ← abs(v[d]) − 2
23: c[d′]← n[d′] // use vectorn to jump
24: if v[d] < 0 then
25: n[d′]← o.x[d′] + 1 // reset component ofn to beyond limit
26: if c[d′] < n[d′] then
27: goto nextcand // new candidate point found
28: else
29: c[d′]← o.x[d′] // since exhausted a dimension reset component ofc

30: end if
31: else
32: n[d′]← o.x[d′]− 1 // reset component ofn to beyond limit
33: if c[d′] > n[d′] then
34: goto nextcand // new candidate point found
35: else
36: c[d′]← o.x[d′] // since exhausted a dimension reset component ofc

37: end if
38: end if
39: end for
40: return false // no candidate point found
41: label : nextcand

42: (infeasible, f)← GetFR(abs(v[0]) − 2, k, o, c, ICTRS , true)
43: end while
44: o.x← c

45: return true

Algorithm 17: Fix completely all the coordinates of the origin of objecto, by first
starting to fix the(abs(v[0])−2)-th coordinate of objecto; ICTRS is the set of internal
constraints associated with objecto; v is the controlling vector.
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Geost Constraint Tutorial

Rida. S. Sadek

September 12, 2007

1 Introduction

The geost constraint is a global constraint that handle generically a variety of geometrical con-
straints.

The geost(K, O, S, C) constraint is given set of parameters which will define the environment
of geost. The parameters are as follows:

K : The space dimension of the geometric objects to be handled.

O : The polymorphic (each object can have many shapes) K -dimensional objects.

S : The set of shapes that each object can have.

C : The set of geometrical constraints.

In the remaining of this tutorial we will explain by example how to implement and set problems
using the geost constraint with choco solver.

2 Example and ways to implement it

Lets first describe a problem and then use it as an example. Consider we have 3 objects o0, o1, o2

and we want to place them in a box B. Let the 3 objects be as shown in Figure 1. Given that the
placement of the objects should be totally inside B this means that the domains of the origins of
each object are as follows (we start from 0 this means that the placement space is from 0 to 9 on
x and from 0 to 5 on y):

o0: on x it is from 0 to 6 and on y it is from 0 to 4

2

4 3 3
1

5

1

Object 0

Object 1
Object 2

10

B

6 6

Figure 1: 3 objects in dimension 2 and the box B we want to place them in. The first 2 objects
are regular rectangles and the third object is a union between 2 rectangles. This means that the
first two each are made of one shifted box and the third by 2 shifted boxes
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o1: on x it is from 0 to 7 and on y it is from 0 to 0

o2: on x it is from 0 to 7 and on y it is from 4 to 4

Please note that an Object can have many shape (polymorphism). However for the time being
we haven’t implemented this feature. The core of the constraint has been built taking care of this
feature this is why the ShapeId variable is an Integer Domain Variable (IntDomainV ar) to be
able to specify multiple shapes for the same object. We will see this shortly.
1. Set the Dimension:
To begin implementing this example we first need to specify the dimension K we are working in.
This is done by assigning the dimension to a local variable that we will use later:

int dim = 2;

2. Create the Problem:
After that we create a choco problem:

Problem pb = new Problem();

3. Create the Objects:
Then we start by creating the objects and store them in an array or vector as such:

V ector < Obj > obj = new V ector < Obj > ();

Now we create the first object with objectId 0 and shapeId 0 with the corresponding domain
variables for the origin.

Obj o = new Obj(dim);
o.setObjectId(0);

Now, as we have discussed above, to specify the shapeId of the Object we give a IntDomainV ar
however we give the inf value equal to the sup value since the polymorphism feature is not yet
implemented.

IntDomainV ar shapeId = pb.makeEnumIntV ar(”sid”, 0, 0);
IntDomainV ar coords[] = new IntDomainV ar[dim];
coords[0] = pb.makeEnumIntV ar(”x”, 0, 6); //Domain of the x coordinate
coords[1] = pb.makeEnumIntV ar(”y”, 0, 4); //Domain of the y coordinate
o.setCoordinates(coords);
o.setShapeId(shapeId);

4. Create the temporal attributes:
Now before adding our object to the Vector obj we need to specify 3 more Integer Domain Vari-
ables which for the current implementation of geost are not working, however we need to give
them dummy values.

o.setStart(pb.makeEnumIntV ar(”start”, 1, 1));
o.setEnd(pb.makeEnumIntV ar(”end”, 1, 1));
o.setDuration(pb.makeEnumIntV ar(”duration”, 1, 1));

5. Add the Object:
Now we are ready to add the object 0 to our obj Vector

obj.add(o);

6. Create the Shifted Boxes of the Object:
As you may have noticed we haven’t specified the size of the rectangle but only the domain of its
origin. This will come later when we specify the shifted box that correspond to the shape of this
object. Now we do the same for the other 2 object o1 and o2 and add them to our obj vector.
To create the shapes and their shifted boxes we create the shifted boxes and associate them with
the corresponding shapeId. This is done as follows, first we create a Vector called sb for example

V ector < ShiftedBox > sb = new V ector < ShiftedBox > ();
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To create the shifted box for the shape 0 (that corresponds to object 0) we create 2 arrays one for
the sizes of the box on each dimension and one to specify the offset of the box on each dimension.

int[] sizes = {4, 2};
int[] offset = {0, 0}; //There is no offset since the origin of the object is the same as the

origin of the shifted box.

7. Add the Shifted Boxes:
Now we add our shifted box to the sb Vector

sb.add(new ShiftedBox(0, offset, sizes)); //where the 0 in the creation of the shiftedBox
object corresponding to the shapeId that this shiftedBox belongs to.

To create a shape which has more than one shifted box we just create a shiftedBox object for
each box it has and assign the same shapeId to all of them taking care of the offset as well. for
example to create the shape for Object 2 we do the following:

int[] sizes1 = {3, 1};
int[] offset1 = {0, 0}
int[] sizes2 = {1, 5};
int[] offset2 = {2,−4};
sb.add(new ShiftedBox(2, offset1, sizes1)) //where the 2 in the creation of the shiftedBox

object correspond to the shapeId that this shiftedBox belongs to.
sb.add(new ShiftedBox(2, offset2, sizes2))

8. Create the constraints:
Now to create the constraint we first create an array containing all the dimensions the constraint
will be active in (in our example it is all dimensions) and lets name this array ectrDim. Then we
create a list of objects that this constraint will apply to (in our example it is all objects). After
that we add the constraint to a vector ectr that contains all the constraints we want to add. The
code for these two steps is as follows:

V ector < ExternalConstraint > ectr = new V ector < ExternalConstraint > ();;
int[] ectrDim = new int[dim];
for(i = 0; i < dim; i + +)

ectrDim[i] = i;
int[] objOfEctr = new int[obj.size()];
for(i = 0; i < obj.size(); i + +)

objOfEctr[i] = obj.elementAt(i).getObjectId();

All we need to do now is create the nonOverlapping constraint and add it to the ectr vector
that holds all the constraints. this is done as follows:

NonOverlapping n = new NonOverlapping(Constants.NON OV ERLAPPING, ectrDim, objOfEctr);
ectr.add(n);

Note that we can specify only a subset of dimensions where the constraint becomes active as
well as we can specify a subset of objects that are constrained by the constraint. For example say
we are working in dimension k = 6, meaning Constants.DIM = 6. And say we have 4 objects A,
B, C and D with object ids 1, 2 , 3 and 4 respectiively . We want an NonOverlapping constraint
for A and B but only in dimensions 1, 4 and 5 also we want an NonOverlapping constraint for C
and D but only in dimensions 1 and 2. To do that we just add 2 constraints to the Setup object
each constraint with the correct parameters, as follows:

int[] ectrDim1 = new int[]{1, 4, 5}; //Create the first list of dimensions
int[] objOfEctr1 = new int[]{1, 2}; //Create the first list of objects
NonOverlapping n1 = new NonOverlapping(Constants.NON OV ERLAPPING, ectrDim1, objOfEctr1);

Now we create the second constraint:
int[] ectrDim2 = new int[]{1, 2}; //Create the first list of dimensions
int[] objOfEctr1 = new int[]{3, 4}; //Create the first list of objects
NonOverlapping n2 = new NonOverlapping(Constants.NON OV ERLAPPING, ectrDim2, objOfEctr2);
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Now we just add the constraints created to the textbfectr vector:
ectr.add(n1);
ectr.add(n2);

10. post the Geost Constraint:
We are almost done, we create the Array of Variables vars to make choco happy (just take a
look at the GeostTest.java example in the code) and then post the geost constraint to the choco
problem as follows:

pb.post(new Geost Constraint(vars, dim, obj, sb, ectr));
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The Following is a Java example, this file can be found in the global package of the geost source code. 
In this class I prepare 4 types of ways to use goest and give ccode to show how to do this. 
The First way shows how to setup geost to read from a text file a problem. 
The second way shows how to create a custom problem from class using java code.
The third way shows how to generate random problems and solve them. Please note that the power of the random generator is very limited
The fourth way shows how to post multiple geost constraints to the same choco problem.
Finally, I created a function called solve that is a bit generic. This is totally however I just wanted to seperate the solving related instructions from the 
example code.

package global;
import java.util.Vector;

import geometricPrim.Obj;
import geometricPrim.ShiftedBox;
import global.VRMLwriter;

import choco.Problem;
import choco.integer.IntDomainVar;
import externalConstraints.ExternalConstraint;
import externalConstraints.NonOverlapping;
import global.Constants;
import global.Geost_Constraint;
import global.InputParser;
import global.MyVarSelector;
import global.RandomProblemGenerator;
import global.SolutionTester;

/*
In the example I have implemented a function called solve just to make things consistent. 
We can not use it of course and just say pb.solve(). 
What the local solve method does is that it takes care of  whether we want to solve for 
the first solution only or for all solutions according to the mode variable. 
Also it manages the writing of vrmlFiles for visualization and the test of solutions of 
different geost constraints posted to the same choco problem.
*/

public class GeostTest {

int dim;
int mode;
public static void main(String[] args) {

//the parameters are dimension and runMode respectively, 
//see constructor for details
GeostTest gt = new GeostTest(3, 1);

}

public GeostTest(int dim, int mode)
{

//The dim parameter is to specidy the dimension of the problem.
//The mode parameter represents the run mode of the solver, 
//0 is to solve for all solution and 1 to solve for the first 
//solution
this.dim = dim;
this.mode = mode;

}

public boolean Use_GEOST_From_Text_File(String inputFileName)
{

Vector<Geost_Constraint> g = new Vector<Geost_Constraint>();
//If the input is a text file similar to the input.txt
//Create the InputParser and parse the input file
InputParser parser = new InputParser(inputFileName, this.dim);
try {

parser.parse();
} catch (Exception e) {

// TODO Auto-generated catch block
e.printStackTrace();

}

//get the problem from the InputParser object
Problem pb = parser.getProblem();

//create a vector to hold in it all the external constraints
//we want to add to geost
Vector<ExternalConstraint> ectr = new Vector<ExternalConstraint>();

//////////////Create the needed external constraints//////////////

//first of all create a array of intergers containing all the 
//dimensions where the constraint will be active 
int[] ectrDim = new int[this.dim];
for (int i = 0; i < this.dim; i++)

ectrDim[i] = i;

//Create an array of object ids representing all the objects that the 



//external constraint will be applied to
int[] objOfEctr = new int[parser.getObjects().size()];
for(int i = 0; i < parser.getObjects().size(); i++)
{

objOfEctr[i] = parser.getObjects().elementAt(i).getObjectId();
}

//Create the external constraint, in our case it is the 
//NonOverlapping constraint (it is the only one 
//implemented for now)
NonOverlapping n = new 

NonOverlapping(Constants.NON_OVERLAPPING, ectrDim, objOfEctr);

//add the created external constraint to the vector we created
ectr.add(n);

////////Create the array of variables to make choco happy////////

//vars will be stored as follows: 
//  object 1 coords(so k coordinates), sid, start, duration, end, 
//  object 2 coords(so k coordinates), sid, start, duration, end, 
//     and so on..
//To retrieve the index of a certain variable, the formula is 
//(nb of the object in question = objId assuming objIds are 
//consecutive and start from 0) * (k + 4) + number of the variable
//wanted the number of the variable wanted is decided 
//as follows: 0 ... k-1 (the coords), k (the sid), k+1 (start), 
//            k+2 (duration), k+3 (end)

//Number of domain variables to represent the origin of all objects
int originOfObjects = parser.getObjects().size() * this.dim; 
//each object has 4 other variables: shapeId, start, duration; end
int otherVariables = parser.getObjects().size() * 4; 
IntDomainVar[] vars = new IntDomainVar[originOfObjects +
    otherVariables];

for(int i = 0; i < parser.getObjects().size(); i++)
{

for (int j = 0; j < this.dim; j++)
{

vars[(i * (this.dim + 4)) + j] = 
parser.getObjects().elementAt(i).getCoord(j);

}
vars[(i * (this.dim + 4)) + this.dim] = 

parser.getObjects().elementAt(i).getShapeId();
vars[(i * (this.dim + 4)) + this.dim + 1] = 

parser.getObjects().elementAt(i).getStart();
vars[(i * (this.dim + 4)) + this.dim + 2] = 

parser.getObjects().elementAt(i).getDuration();
vars[(i * (this.dim + 4)) + this.dim + 3] = 

parser.getObjects().elementAt(i).getEnd();
}

//////////////Create the geost constraint/////////////
Geost_Constraint geost = new Geost_Constraint

(vars, this.dim, parser.getObjects(), 
parser.getShiftedBoxes(), ectr);

/////////////Add the constraint to the choco problem//////
pb.post(geost);
g.add(geost);
solve(pb, g);

return true;
}

public boolean CustomProblem()
{

Vector<Geost_Constraint> g = new Vector<Geost_Constraint>();

int lengths [] = {5, 3, 2};
int widths[] = {2 ,2 ,1};
int heights[] = {1,1,1};

int nbOfObj = 3;

//create the choco problem
Problem pb = new Problem();

//Create Objects
Vector<Obj> obj2 = new Vector<Obj>();

for (int i = 0; i < nbOfObj; i++)
{

IntDomainVar shapeId = pb.makeEnumIntVar("sid", i, i);
IntDomainVar coords[] = new IntDomainVar[this.dim];
for(int j = 0; j < coords.length; j++)
{

coords[j] = pb.makeEnumIntVar("x" + j, 0, 20);
}
Obj o2 = new Obj(this.dim);



o2.setObjectId(i);
o2.setCoordinates(coords);
o2.setShapeId(shapeId);
o2.setStart(pb.makeEnumIntVar("start", 1, 1));
o2.setEnd(pb.makeEnumIntVar("end", 1, 1));
o2.setDuration(pb.makeEnumIntVar("duration", 1, 1));
obj2.add(o2);                               

}

//create shiftedboxes and add them to corresponding shapes
Vector<ShiftedBox> sb2 = new Vector<ShiftedBox>();
int h = 0;
while(h< nbOfObj)
{

int[] l = {lengths[h], heights[h] ,widths[h]};
int [] t ={0, 0, 0};

sb2.add(new ShiftedBox(h,t,l));
h++;

}

//Create the external constraints vecotr
Vector<ExternalConstraint> ectr2 = new Vector<ExternalConstraint>();
//create the list od dimensions for the external constraint
int[] ectrDim2 = new int[this.dim];
for (int d = 0; d < 3; d++)

ectrDim2[d] = d;

//create the list of object ids for the external constraint
int[] objOfEctr2 = new int[nbOfObj];
for(int d = 0; d < nbOfObj; d++)
{

objOfEctr2[d] = obj2.elementAt(d).getObjectId();  
}

//create the external constraint of type non overlapping
NonOverlapping n2 = new NonOverlapping

(Constants.NON_OVERLAPPING, ectrDim2, objOfEctr2);
//add the external constraint to the vector
ectr2.add(n2);

   ////////Create the array of variables to make choco happy////////

     //vars will be stored as follows: 
     //  object 1 coords(so k coordinates), sid, start, duration, end, 
     //  object 2 coords(so k coordinates), sid, start, duration, end, 
     //     and so on..
     //To retrieve the index of a certain variable, the formula is 
     //(nb of the object in question = objId assuming objIds are 
     //consecutive and start from 0) * (k + 4) + number of the variable

              //wanted the number of the variable wanted is decided 
     //as follows: 0 ... k-1 (the coords), k (the sid), k+1 (start), 
     //            k+2 (duration), k+3 (end)

//Number of domain variables to represent the origin of all objects
int originOfObjects2 = nbOfObj * this.dim; 
//each object has 4 other variables: shapeId, start, duration; end
int otherVariables2 = nbOfObj * 4; 
IntDomainVar[] vars2 = new IntDomainVar[originOfObjects2 + 

otherVariables2];

for(int i = 0; i < nbOfObj; i++)
{

for (int j = 0; j < this.dim; j++)
{

vars2[(i * (this.dim + 4)) + j] = 
obj2.elementAt(i).getCoord(j);

}
vars2[(i * (this.dim + 4)) + this.dim] = 

obj2.elementAt(i).getShapeId();
vars2[(i * (this.dim + 4)) + this.dim + 1] = 

obj2.elementAt(i).getStart();
vars2[(i * (this.dim + 4)) + this.dim + 2] = 

obj2.elementAt(i).getDuration();
vars2[(i * (this.dim + 4)) + this.dim + 3] = 

obj2.elementAt(i).getEnd();
}

//create the geost constraint object
Geost_Constraint geost2 = 

new Geost_Constraint(vars2, this.dim, obj2, sb2, ectr2);
//post the geost constraint to the choco problem
pb.post(geost2);
g.add(geost2);

solve(pb, g);

return true;



}

public void RandomProblemGeneration()
 {

Vector<Geost_Constraint> g = new Vector<Geost_Constraint>();

//nb of objects, shapes, shifted boxes and maxLength respectively
//The nb of Obj should be equal to nb Of shapes for NOW. 
//as For the number of the shifted Boxes it should be 
//greater or equal to the nb of Objects

RandomProblemGenerator rp = 
new RandomProblemGenerator(this.dim, 7, 7, 7, 25); 

rp.generateProb();

Problem pb = rp.getPb();

Vector<ExternalConstraint> ectr = new Vector<ExternalConstraint>();
int[] ectrDim = new int[this.dim];
for (int i = 0; i < this.dim; i++)

ectrDim[i] = i;

int[] objOfEctr = new int[rp.getObjects().size()];
for(int i = 0; i < rp.getObjects().size(); i++)
{

objOfEctr[i] = rp.getObjects().elementAt(i).getObjectId();
}

NonOverlapping n = new NonOverlapping
(Constants.NON_OVERLAPPING, ectrDim, objOfEctr);

ectr.add(n);

//Number of domain variables to represent the origin of all objects
int originOfObjects2 = 

rp.getObjects().size() * this.dim; 
//each object has 4 other variables: shapeId, start, duration; end
int otherVariables2 = rp.getObjects().size() * 4; 
IntDomainVar[] vars3 = 

new IntDomainVar[originOfObjects2 + otherVariables2];

for(int i = 0; i < rp.getObjects().size(); i++)
{

for (int j = 0; j < this.dim; j++)
{

vars3[(i * (this.dim + 4)) + j] = 
rp.getObjects().elementAt(i).getCoord(j);

}
vars3[(i * (this.dim + 4)) + this.dim] = 

rp.getObjects().elementAt(i).getShapeId();
vars3[(i * (this.dim + 4)) + this.dim + 1] = 

rp.getObjects().elementAt(i).getStart();
vars3[(i * (this.dim + 4)) + this.dim + 2] = 

rp.getObjects().elementAt(i).getDuration();
vars3[(i * (this.dim + 4)) + this.dim + 3] = 

rp.getObjects().elementAt(i).getEnd();
}

Geost_Constraint geost3 = 
new Geost_Constraint(vars3, this.dim, rp.getObjects(),
 rp.getSBoxes(), ectr);

pb.post(geost3);
g.add(geost3);

/*
We could also use functions to write things to files
in two formats. One to be used as input to the parser
and one to be used for humans to read.
geost3.getStp().printToFileInputFormat

("PathToTheOutput_Input.txt");
geost3.getStp().printToFileHumanFormat

("PathToTheOutput_Human.txt");
*/

solve(pb, g);
}

public void MultipleGeostConstraintsInSameProblem()
{

Vector<Geost_Constraint> g = 
new Vector<Geost_Constraint>();

//This example is to show how to give to the same choco problem 
//2 different geost constraints. 

//////////////////THE FIRST PROBLEM//////////////////

//If the input is a text file similar to the input.txt
//Create the InputParser and parse the input file
InputParser parser = new InputParser

("/Users/ridasadek/Documents/geostInOutFiles/input3D.txt",
 this.dim);

try {



parser.parse();
} catch (Exception e) {

e.printStackTrace();
}

//get the problem from the InputParser object
Problem pb = parser.getProblem();

//create a vector to hold in it all the external constraints
//we want to add to geost
Vector<ExternalConstraint> ectr = 

new Vector<ExternalConstraint>();

//////////////Create the needed external constraints////////////

//first of all create a array of intergers containing all 
//the dimensions where the constraint will be active 
int[] ectrDim = new int[this.dim];
for (int i = 0; i < this.dim; i++)

ectrDim[i] = i;

//Create an array of object ids representing all the objects 
//that the external constraint will be applied to
int[] objOfEctr = new int[parser.getObjects().size()];
for(int i = 0; i < parser.getObjects().size(); i++)
{

objOfEctr[i] = parser.getObjects().elementAt(i).getObjectId();
}

//Create the external constraint, in our case it is the
//NonOverlapping constraint (it is the only one implemented for now)
NonOverlapping n = new NonOverlapping

(Constants.NON_OVERLAPPING, ectrDim, objOfEctr);

//add the created external constraint to the vector we created
ectr.add(n);

////////Create the array of variables to make choco happy//////

//See the above examples to understand how this 
//array of variables is created
int originOfObjects = 

parser.getObjects().size() * this.dim; 
int otherVariables = 

parser.getObjects().size() * 4; 
IntDomainVar[] vars = 

new IntDomainVar[originOfObjects + otherVariables];

for(int i = 0; i < parser.getObjects().size(); i++)
{

for (int j = 0; j < this.dim; j++)
{

vars[(i * (this.dim + 4)) + j] = 
parser.getObjects().elementAt(i).getCoord(j);

}
vars[(i * (this.dim + 4)) + this.dim] = 

parser.getObjects().elementAt(i).getShapeId();
vars[(i * (this.dim + 4)) + this.dim + 1] = 

parser.getObjects().elementAt(i).getStart();
vars[(i * (this.dim + 4)) + this.dim + 2] = 

parser.getObjects().elementAt(i).getDuration();
vars[(i * (this.dim + 4)) + this.dim + 3] = 

parser.getObjects().elementAt(i).getEnd();
}

////////////////Create the geost constraint/////////////////////
Geost_Constraint geost = 

new Geost_Constraint(vars, this.dim, parser.getObjects(),
 parser.getShiftedBoxes(), ectr);

///////////////Add the constraint to the choco problem//////////////
pb.post(geost);
g.add(geost);

//////////////////////////THE SECOND PROBLEM///////////////////

int lengths [] = {5, 3, 2};
int widths[] = {2 ,2 ,1};
int heights[] = {1,1,1};

int nbOfObj = 3;

//Create Objects
Vector<Obj> obj2 = new Vector<Obj>();

for (int i = 0; i < nbOfObj; i++)
{

IntDomainVar shapeId = pb.makeEnumIntVar("sid", i, i);
IntDomainVar coords[] = new IntDomainVar[this.dim];
for(int j = 0; j < coords.length; j++)
{



coords[j] = pb.makeEnumIntVar("x" + j, 3, 20);
}
Obj o2 = new Obj(this.dim);
o2.setObjectId(i);
o2.setCoordinates(coords);
o2.setShapeId(shapeId);
o2.setStart(pb.makeEnumIntVar("start", 1, 1));
o2.setEnd(pb.makeEnumIntVar("end", 1, 1));
o2.setDuration(pb.makeEnumIntVar("duration", 1, 1));
obj2.add(o2);                               

}

//create shiftedboxes and add them to corresponding shapes
Vector<ShiftedBox> sb2 = new Vector<ShiftedBox>();
int h = 0;
while(h< nbOfObj)
{

int[] l = {lengths[h], heights[h] ,widths[h]};
int [] t ={0, 0, 0};

sb2.add(new ShiftedBox(h,t,l));
h++;

}

Vector<ExternalConstraint> ectr2 = 
new Vector<ExternalConstraint>();

int[] ectrDim2 = new int[this.dim];
for (int d = 0; d < 3; d++)

ectrDim2[d] = d;

int[] objOfEctr2 = new int[nbOfObj];
for(int d = 0; d < nbOfObj; d++)
{

objOfEctr2[d] = obj2.elementAt(d).getObjectId();  
}

NonOverlapping n2 = new NonOverlapping
(Constants.NON_OVERLAPPING, ectrDim2, objOfEctr2);

ectr2.add(n2);

//See the above examples to understand how this 
//array of variables is created
int originOfObjects2 = nbOfObj * this.dim; 
int otherVariables2 = nbOfObj * 4; 
IntDomainVar[] vars2 = 

new IntDomainVar[originOfObjects2 + otherVariables2];

for(int i = 0; i < nbOfObj; i++)
{

for (int j = 0; j < this.dim; j++)
{

vars2[(i * (this.dim + 4)) + j] = 
obj2.elementAt(i).getCoord(j);

}
vars2[(i * (this.dim + 4)) + this.dim] = 

obj2.elementAt(i).getShapeId();
vars2[(i * (this.dim + 4)) + this.dim + 1] = 

obj2.elementAt(i).getStart();
vars2[(i * (this.dim + 4)) + this.dim + 2] = 

obj2.elementAt(i).getDuration();
vars2[(i * (this.dim + 4)) + this.dim + 3] = 

obj2.elementAt(i).getEnd();
}
Geost_Constraint geost2 = 

new Geost_Constraint(vars2, this.dim, obj2, sb2, ectr2);
pb.post(geost2);
g.add(geost2);

solve(pb, g);
}

private boolean solve(Problem pb, Vector<Geost_Constraint> g)
{

        //If needed to test whether the solution is correct (for 
//non overlapping in all dimensons and all objects)
Vector<SolutionTester> tester = new Vector<SolutionTester>();
for(int i = 0; i< g.size(); i++)
{

 SolutionTester s = 
new SolutionTester(g.elementAt(i).getStp(), 

g.elementAt(i).getCst());
 tester.add(s);

}

//Still need to modify the MyVarSelector to handle 
//all the added geost constraints variables.
if (g.size() == 1)

pb.getSolver().setVarSelector(new MyVarSelector
(g.elementAt(0).getStp(), 



g.elementAt(0).getCst()));

if(this.mode == 0)
{

//for all solutions
System.out.println("Getting all Solutions ...");
//solve
if (pb.solve() == Boolean.TRUE) {

do {
if(pb.isCompletelyInstantiated())
{

for(int i = 0; i < g.size(); i++)
{

if(!tester.elementAt(i).testSolution())
{

System.err.println("Wrong Solution found");
return false;

}
else
{

//Specify the  vrml output folder, meaning
//the folder we will be writing 
//the vrml file to
g.elementAt(i).getCst().setVRML_OUTPUT_FOLDER

("PathToOutputVrmlFolder");

//write the vrml file ".wrl" so that we can
//visualize it later if we want to
VRMLwriter.printVRML3D(g.elementAt(i).getStp(),

g.elementAt(i).getCst(),"solution"+i, 
pb.getSolver().getNbSolutions());

}
}

}

} while(pb.nextSolution() == Boolean.TRUE);
}

}
else if(this.mode == 1)
{

//for the first solution
System.out.println("Getting first Solution ...");
//solve
pb.solve();
for(int i = 0; i < g.size(); i++)
{

//Specify the  vrml output folder, meaning the 
//folder we will be riting the vrml file to
g.elementAt(i).getCst().setVRML_OUTPUT_FOLDER

("PathToOutputVrmlFolder");
//write the vrml file ".wrl" so that we package global;
//can visualize it later if we want to
VRMLwriter.printVRML3D(g.elementAt(i).getStp(), 

g.elementAt(i).getCst(),"solution", i);
//test the solution
if(!tester.elementAt(i).testSolution())
{

System.err.println("Wrong Solution foud");
return false;

}
else 

System.out.println(tester.elementAt(i).testSolution());
//print the solution to a file easily read by humans
g.elementAt(i).getStp().printToFileHumanFormat

("PathToFileOutput");
}

}
System.out.println("NbSol: " + pb.getSolver().getNbSolutions());
return true;

}

}
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ex([O1,Y1a,Y1b,Y1c,

O2,Y2a,Y2b,Y2c,Y2d,

O3,Y3a,Y3b,Y3c,Y3d,

O4,Y4a,Y4b,Y4c],

Synch) :-

domain([Y1a,Y1b,Y1c,

Y2a,Y2b,Y2c,Y2d,

Y3a,Y3b,Y3c,Y3d,

Y4a,Y4b,Y4c], 1, 5),

O1 in 1..28,

O2 in 1..26,

O3 in 1..22,

O4 in 1..25,

disjoint2([t(1,1,5,1), t(20,4,5,1),

t(1,1,4,1), t(14,4,4,1),

t(1,2,3,1), t(24,2,3,1),

t(1,2,2,1), t(21,1,2,1),

t(1,3,1,1), t(14,2,1,1),

t(O1,3,Y1a,1),

t(O1,3,Y1b,1),

t(O1,3,Y1c,1),

t(O2,5,Y2a,1),

t(O2,5,Y2b,1),

t(O2,5,Y2c,1),

t(O2,5,Y2d,1),

t(O3,9,Y3a,1),

t(O3,9,Y3b,1),

t(O3,9,Y3c,1),

t(O3,9,Y3d,1),

t(O4,6,Y4a,1),

t(O4,6,Y4b,1),

t(O4,6,Y4c,1)],

[synchronization(Synch)]).

T h e fi le library(’clpfd/examples/squares.pl’) con ta in s a n e x a m p le w h e re

disjoint2/2 is use d for tilin g sq ua res.

geost(+Objects,+Shapes)

geost(+Objects,+Shapes,+Options)

con stra in s th e loc a tion in sp a c e of n on -ov erla p p in g m ulti-d im e n sion a l Objects,

e a ch of w h ich ta k in g a sh a p e a m on g a set of S h a p es.

E a ch sh a p e is d e fi n e d a s a fi n ite se t of sh ifted bo x es, w h e re e a ch sh ifte d b ox is

d e sc rib e d b y a b ox in a k-d im e n sion a l sp a c e a t th e giv e n off set w ith th e giv e n

siz e s. A sh ifte d b ox is d e scrib e d b y a groun d term sbox(Sid,Offset,Size)

w h e re S id , a n in teger, is th e sh a p e id ; Off set, a list of k in tegers, d e n otes th e

off set of th e sh ifte d b ox from th e origin of th e ob je c t; a n d S ize, a list of k

in tegers gre a te r th a n z e ro, d e n otes th e siz e of th e sh ifte d b ox . T h e n , a sh a p e

is a colle c tion of sh ifte d b ox es a ll sh a rin g th e sa m e sh a p e id . N ote th a t th e
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shifted box es assoc iated w ith a giv en shape m ay or m ay n ot ov erlap. Shapes is
thu s the list of su ch sbox/3 term s.

E ach object is d esc ribed by a term object(Oid,Sid,Origin w here O id , an
in teger, is the u n iq u e object id ; Sid , an in teger or d om ain v ariable, is the shape
id ; an d O rig in , a list of in tegers or d om ain v ariables, is the origin coord in ate
of the object. If Sid is n on grou n d , the object is said to be po ly m o rphic . The
possible v alies for Sid are the shape id s that oc c u r in Shapes. O b jec ts is thu s
the list of su ch object/3 term s.

O ptio n s is a list of zero or m ore of the follow in g, w here B o o lean m u st be true

or false (false is the d efau lt):

lex(Boolean)

If true, for an y tw o objects O 1 an d O 2 su ch that they hav e the
sam e shape id an d O 1 occ u rs before O 2 in O b jec ts, the origin
coord in ate of O 1 is con strain ed to be lex icographically less than or
eq u al to the origin coord in ate of O 2 .

cumulative(Boolean)

If true, red u n d an t reason in g m ethod s are en abled , based on pro-
jectin g the objects on to each d im en sion .

longest_hole(Boolean)

If true, the fi lterin g algorithm com pu tes an d u ses in form ation
abou t holes that can be tolerated w ithou t n ecessarily failin g the
con strain t.

parconflict(Boolean)

If true, red u n d an t reason in g m ethod s are en abled , based on com -
pu tin g the n u m ber of item s that can be pu t in parallel in the d if-
feren t d im en sion s.

visavis(Boolean)

If true, a red u n d an t m ethod is en abled that d yn am ically d etect
holes that w ill n ecessarily fail the con strain t.

corners(Boolean)

If true, a red u n d an t m ethod is en abled that reason s in term s on
bord ers that im pin ge on the corn ers of objects. This m ethod has
n ot been show n to pay off ex perim en tally.

task_intervals(Boolean)

If true, a red u n d an t reason in g m ethod is en abled that d etects ov er-
crow d ed an d u n d ercrow d ed region s of the placem en t space. This
m ethod has n ot been show n to pay off ex perim en tally.

dynamic_programming(Boolean)

If true, a red u n d an t reason in g m ethod is en abled that solv es a
k n apsack problem for each colu m n of the projection of the objects
on to each d im en sion . This m ethod has pseu d o-polyn om ial com -
plex ity bu t can be q u ite pow erfu l.
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polymorphism(Boolean)

If true, a re a son in g m eth od is e n a b le d th a t is re le v a n t in th e con -
te x t of p oly m orp h ic ob je c ts a n d n o sla ck . T h e m e th od d e te c ts
p a rts of th e p la c e m e n t sp a c e th a t c a n n ot b e fi lle d a n d th us fa ils
th e con stra in t.

fixall(Flag,Patterns)

If giv e n , Flag is a n in teger or d om a in v a ria b le in 0..1. If Flag

e q ua ls 1, e ith e r in itia lly or b y b in d in g Flag d urin g se a rch , th e con -
stra in t sw itch e s b e h a v ior in to gre e d y a ssign m e n t m od e . T h e gre e d y
a ssign m e n t w ill e ith e r suc c e e d a n d a ssign a ll sh a p e id s a n d origin
coord in a tes to v a lues th a t sa tisfy th e con stra in t, or m ere ly fa il. Flag

is n e v e r b oun d b y th e con stra in t; its sole fun ction is to con trol th e
b e h a v ior of th e con stra in t.

G re e d y a ssign m e n t is d on e on e ob je c t a t a tim e , in th e ord er of
O b je c ts. T h e a ssign m e n t p e r ob je c t is con trolle d b y P atte rn s,
w h ich sh ould b e a list of on e or m ore p a ttern te rm s of th e form
object(_,SidSpec,OriginSpec), w h e re S id S p e c is a term min(I)

or max(I), O rigin S p e c is a list of k such term s, a n d I is a un iq ue
in teger b e tw e e n 1 a n d k+1.

T h e m e a n in g of th e p a tte rn is a s follow s. T h e v a ria b le in th e p osi-
tion of min(1) or max(1) is fi x e d fi rst; th e v a ria b le in th e p osition
of min(2) or max(2) is fi x e d se con d ; a n d so on . min(I) m e a n s
try in g v a lues in a sc e n d in g ord er; max(I) m e a n s d e sc e n d in g ord er.

If P atte rn s con ta in s m p a tte rn , th e n ob je c t 1 is fi x e d a c cord in g to
p a ttern 1, . . ., ob je c t m is fi x e d a c cord in g to p a ttern m, ob je c t m+1
is fi x e d a c cord in g to p a ttern 1, a n d so on . F or e x a m p le , sup p ose
th a t th e follow in g op tion is giv e n :

fixall(F, [object(_,min(1),[min(3),max(2)]),

object(_,max(1),[min(2),max(3)])])

T h e n , if th e p rogra m b in d s F to 1, th e con stra in t e n te rs gre e d y
a ssign m e n t m od e a n d e n d e a v ors to fi x a ll ob je c ts a s follow s.

• F or ob je c t 1, 3 , . . ., (a ) th e sh a p e is fi x e d to th e sm a lle st p os-
sib le v a lue , (b ) th e Y coord in a te is fi x e d to th e la rgest p ossib le
v a lue , (c ) th e X coord in a te is fi x e d to th e sm a lle st p ossib le
v a lue .

• F or ob je c t 2 , 4 , . . ., (a ) th e sh a p e is fi x e d to th e la rgest p ossib le
v a lue , (b ) th e X coord in a te is fi x e d to th e sm a lle st p ossib le
v a lue , (c ) th e Y coord in a te is fi x e d to th e la rgest p ossib le v a lue .

Sup p ose th a t y ou h a v e a p la c e m e n t p rob le m w h e re y ou a re on ly in te reste d in fi n d in g out
w h e th e r a solution e x ists or n ot, a n d w h a t th a t solution is. T h e n th e se a rch sp a c e c a n b e re -
d uc e d b y d o min atio n c o n strain ts, i.e . con stra in ts th a t rule out solution s th a t a re d om in a te d
b y som e oth er solution , w ith a gua ra n te e th a t n ot a ll solution s a re rule d out. T h e follow in g
a ux ilia ry p re d ic a tes w ill p ost d om in a tion con stra in ts th a t a re v a lid for 2 -d im e n sion a l p la c e -
m e n t p rob le m m od e lle d w ith geost/[2,3] w h e re e a ch ob je c t con sists of a sin gle re c ta n gle ,
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an d the origin coord in ates are com pletely u n restrain ed w ithin the problem ’s placem en t
space.

S u ppose in partic u lar that you w an t to fi n d the sm allest rectan gle in w hich a giv en set
of rectan gles can be pack ed w ithou t ov erlap. This typically lead s to solv in g a series of
su bproblem s w ith n on -d ecreasin g size of the placem en t space. In this scen ario, a heav y
com pu tation can be factored ou t of the com pu tation of d om in ation con strain ts an d be d on e
on ce for the w hole series. F or this reason , w e prov id e tw o pred iactes: geost_domination_
data/3, w hich perform s a heav y, factorable com pu tation , an d geost_domination_post/4,
w hich u ses the ou tpu t of the form er an d posts the actu al d om in ation con strain ts.

geost_domination_data(+Sizes, [+MaxX,+MaxY], -Data)

Sizes is a list of pairs [Length,Height] of rectan gles that w ill be u sed in a
2 -d im en sion al placem en t problem , or in a series of su ch problem s. M a x X an d
M a x Y resp. are the m ax im u m len gth resp. height of the placem en t space of the
problem or series of problem s. D a ta is u n ifi ed w ith a term su itable for passin g
to geost_domination_post/4.

geost_domination_post(+Origins, +Sizes, [+MaxX,+MaxY], +Data)

O rig in s is a list of pairs [X,Y] of origin coord in ates of the objects of a 2 -
d im en sion al placem en t problem . Sizes is a list of pairs [Length,Height] of the
correspon d in g rectan gles, in the sam e ord er. M a x X an d M a x Y resp. are the
len gth resp. height of the placem en t space of the problem . D a ta is a term passed
from geost_domination_data/3. This pred icate posts d om in ation con strain ts,
as ex plain ed abov e.

The follow in g con strain ts ex press the fact that sev eral v ectors of d om ain v ariables are in
ascen d in g lex icographic ord er:

lex_chain(+Vectors)

lex_chain(+Vectors,+Options)

w here V ec to rs is a list of v ectors (lists) of d om ain v ariables w ith fi n ite bou n d s or
in tegers. The con strain t hold s if V ec to rs are in ascen d in g lex icographic ord er.

O p tio n s is a list of zero or m ore of the follow in g:

op(Op) If O p is the atom #=< (the d efau lt), the con strain ts hold s if V ec to rs

are in n on -d escen d in g lex icographic ord er. If O p is the atom #<, the
con strain ts hold s if V ec to rs are in stric tly ascen d in g lex icographic
ord er.

increasing

This option im poses the ad d ition al con strain t that each v ector in
V ec to rs be sorted in stric tly ascen d in g ord er.

among(Least,Most,Values)

If giv en , L ea st an d M o st shou ld be in tegers su ch that 0 ≤ Least ≤

M o st an d V a lu es shou ld be a list of d istin c t in tegers. This option
im poses the ad d ition al con strain t on each v ector in V ec to rs that at
least L ea st an d at m ost M o st elem en ts belon g to V a lu es.
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1 Impacts and concrete utilisation 
 
1.1. Academics 
 
KLS OPTIM gives industrial constraint programming lectures to academics mainly for high 
engineering schools or in the last year of the LMD cycle. The objectives of the course are: 

• Introduction of the constraint programming system Choco. 
• Introduction of novel modelling techniques of combinatorial industrial problems. 
• Modelling of scheduling and assignment problems in production. 
• Modelling of packing problems using global constraints developed in the context of 

Net-WMS project. 
 
Durations of lectures range from 2 hours to 3 hours. 
 
1.2 Research 
 
KLS OPTIM works with other research teams on combinatorial problems. All research and 
prototypes are developed with the constraint programming system Choco. 
 
1.3 KLS OPTIM 
 
KLS OPTIM uses the constraint programming system Choco to develop business 
components. KLS OPTIM and EMN teams put a lot of synergy in the Choco project. KLS 
OPTIM provides expertise, requirements and recommendations of developments of new 
constraints to enrich the Choco system. All the implementations are carried on by EMN. KLS 
OPTIM decides to put more supports by maintaining a release and building a library of tests 
to automate the test phase when Choco is enriched with new constraints or when new 
improvements are made available.  
 
The figure below shows the architecture and the expected results of the Net-WMS project. 
This section deals with the palletizer business component. The solvers of the business 
components are developed completely in Java using the constraint programming Choco 
system.  The important contribution of the Net-WMS is the global constraint Geost. The basic 
version is used by KLS OPTIM and some of the components are deployed in the industry. 
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Figure 1: Innovative Net-WMS J2EE architecture 
 
 
In the context of the Net-WMS project, KLS OPTIM is developing two business components 

• Optim Pallet: The palletizer takes as input a set of cartons or conditionings, a set of 
parameters and directives. It produces a set of optimised pallets. 

• Optim Truck: the system takes as input a set of pallets, a set of parameters and 
directives. It produces an optimal loading plan of pallets in trucks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cartons - 
articles 
 
 
 

Optim Pallet 
 
 
 

Pallets 
 
 
 

Optim Truck 
 
 
 

Optima loading plans 
 
 
 



 
 

Figure 2: Business packing components. 
 
The first versions take of the components takes as input Excel data and produce also Excel 
results. 
 
The business packing (Optim Pallet & Optim Truck) components are structured into 
components: 

• Packing container: the logic of packing. This is the main entry to drive the different 
components of the packing module. 

• Packing solver: the optimisation; this components takes well defined inputs and 
produces results which are then processed by the packing container. 

• Packing Player: This is 3D visualisation of containers and items of the container. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Multiple steps of the Packing Solver of KLS OPTIM 
 
The coming versions will take in addition XML inputs and produce XML results.  
 
A new version of the business components is planned for year 2 of the project. The business 
components will benefit from the new features which are mainly the polymorphism in Geost; 
which is the capability to choose between several shapes. 
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Figure 4: KLS OPTIM 3D Player 
 
 

 
 

Figure 5: KLS OPTIM 3D Player – 2D projection 



 
 

Figure 6: KLS OPTIM 3D Player – Bin information 
 
1.4 End users 
 
KLS OPTIM deployed the first version of the palletizer in an international distribution 
company; a client of KLS OPTIM which contributes to the requirement definitions and testing 
phase. In returns, the company had special conditions as defined in the Net-WMS project.  
 

 
 
 
 
 
Significant improvements are measured: 

• Packing around 100 conditionings (cartons) in less than 1 minute. 
• Significant improvements for large orders (up to 20%). 
• The total packing tasks takes less than 15 minutes for the system whilst it requires a 

full day for an operator. 


