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SUMMARY

This document describes the contribution to the software deliverable D4.2 regarding the
developpement of the geometrical kernel geost. The geost constraint was integrated within the
constraint programming platform of EMN (i.e., the CHOCO library), as well as in the
constraint programming platform of SICS (i.e., SICStus Prolog).

Both versions can be dowloaded from the web :

CHOCO is available from
http://choco.emn.fr

while the SICStus version containing geost is available from

http://www.sics.se/sicstus/products4/sicstus/4.0.2-NETWMS-2/binaries/x86-
linux-glibc2.3/sp-4.0.2-NETWMS-2-x86-linux-glibc2.3.tar.gz

The document is composed of four parts that respectively correspond to :

(Part A) An updated version of the specification of the geometrical kernel that integrates the
greedy mode of the geometrical kernel. It extends the SICS report T2007-08 (A Generic
Geometrical Constraint Kernel in Space and Time for Handling Polymorphic k-Dimensional
Objects).

(Part B) The CHOCO documentation of the geost constraint.

(Part C) The SICStus documentation of the geost constraint.

(Part D) An example of exploitation of the geost constraint by KLS-Optim.



Part A: Geometrical kernel and greddy mode
Armines & SICS



A Generic Geometrical Constraint Kernel in Space and
Time for Handling Polymorphic k-Dimensional Objects

Nicolas Beldiceanly Mats Carlssof, Rida Sadek and Mohammed Shihi

1 Ecole des Mines de Nantes, LINA FRE CNRS 2729, FR-44307 daRtance
{Ni col as. Bel di ceanu, Emmanuel . Poder, Ri da. Sadek}@m. fr
2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mat s. Carl sson@i cs. se

Abstract. This article introduces a generic geometrical constramél for han-
dling the location in space and time of polymorphialimensional objects sub-
ject to various geometrical and time constraints. It firsalies a reduced set of
standard primitives one has to provide for plugging any neangetrical/temporal
constraint. Based on these primitives, it develops a geredimensional lexi-
cographic sweep-point algorithm for filtering the attriésiof an object (i.e., the
coordinates of its origin as well as its start and end in tisording to all con-
straints where the object occurs. Experiments are proviidéide context ofin-
clusion andnon-overlapping constraints in dimensioris 3 and4, both for simple
shapes (i.e., rectangles, parallelepipeds) as well asdoe complex shapes.

1 Introduction

This article introduces a global constraiost(k, O, S,C) for handling in a generic
way a variety of geometrical constrainfsin space and time between polymorphic
k-dimensional object® (k € NT), each of which taking a shape among a set of shapes
S during a given time interval and at a given position in space.

Each shape fror§ is defined as a finite set of shifted boxes, where each shiéed b
is described by a box in &dimensional space at the given offset with the given sizes.
More precisely ahifted box s = shape(sid, t[],[[]) € Sis an entity defined by its shape
id s.sid, shift offsets.t[d], 0 < d < k, and sizes.l[d] (s.l[d] > 0,0 < d < k). All at-
tributes of a shifted box are integer values. Theshapeis a collection of shifted boxes
sharing all the same shapetdEachobject o = object(id, sid, z[], start, duration, end)
from O is an entity defined by its unique objectdadd (an integer), shape id sid, ori-
gino.z[d],0 < d < k, startin timeo.start, duration in timev. duration (o.duration >
0) and end in time.end. 2 All attributessid, z[0], z[1], ..., z[k — 1], start, duration

! Note that the shifted boxes associated with a given shapeomagy not overlap. This some-
times allows a drastic reduction in the number of shifteddsaxeeded to describe a shape.
2 A first reason why the time dimension is treated specially @orfrom the fact that the
duration attribute may not fixed, which is actually not the case for $imes of a shifted
box. A second reason to distinguish the time dimension frieengeometrical dimensions is

that all geometrical constraints only apply on objects ihirsect in time.



end correspond to domain variablégypical constraints from the list of constraints
C are for instance the fact that a given subset of objects ffbdo not pairwise over-
lap or that they are all included within a given bounding b@rnstraints of the list of
constraint have always two first arguments; and ©O; (followed by possibly some
additional arguments) which respectively specify:

— Alist of dimensions (integers betweérandk — 1), or attributes of the objects of
O, or attributes of the shifted boxes 8fthe constraint considers.
— Alist of identifiers of the objects to which the constrainpées.

Example 1. Assume we have &-dimensional placement problem involving a set of paral-
lelepipedsP and one subseP’ of P, where we want to express the fact that (1) all par-
allelepipeds of P should not overlap, and (2) no parallelepipeds 7of should be piled.
We have a placement problem wheke = 3. Constraints (1) and (2) respectively corre-
spond tonon-overlapping ([0, 1,2], P) and to non-overlapping([0, 1], P"). Within the first
non-overlapping constraint, the argumen, 1,2] expresses the fact that we consider a
non-overlapping constraint according to dimensiond and 2 (i.e., given any pair of paral-
lelepipedsp” and p” of P there should exist at least one dimensibiid € {0, 1,2}) where
the projections op’ andp” on d do not overlap). Similarly, the argumejt, 1] of the second
non-overlapping constraint expresses the fact that, gimgrpair of parallelepipeds andp” of

P’, there should exist at least one dimensibfi € {0, 1}) wherep’ andp” do not overlap).

Thegeost constraintis defined in the following way: given a consttain; (A;, O;)
from the list of constraint€ between a subset of objeaty C O according to the
attributesA;, let MC; denotes the sets of maximum cliques stemming from the abject
of O; which all overlap in timé!. The geost (k, O, S, C) constraint holds if and only if
Vetr; € C, VOMQ e MC; : Ctri(OMCT;) holds.

Example 2. Figure 1 presents a typical example of a dynamic two-dinteraiplacement prob-
lem where one has to place four objects, both in time as welithén a given box, so that objects
that overlap in time do not overlap within the box. Parts (®), (C) and (D) respectively repre-
sent the potential shapes associated with the four obgglace, where the origin of each object
is stressed in bold. Part (E) shows the position of the fojeatb of the example as the time vary,
where the first, second, third and fourth objects were reas@ég assigned shapds 5, 8 and9:

— During the first time interval2, 9] we have only objec; at position(1, 2).

— Then, at instant0 objectsO> and O3 both appear. Their origins are respectively placed at
positions(2, 1) and (4, 1).

— Atinstant14 objectO; disappears and is replaced by objegt The origin ofO, is fixed at
position(1, 1). Finally at instan22 all three object®,, O3 andO, disappear.

The arguments of the correspondige st constraint are:

3 A domain variable v is a variable ranging over a finite set of integers denoteddy(v); let
v andw respectively denote the minimum and maximum possible gdioey.

4 |n fact these maximum cliques are only used for defining tioéedative semantics of thgeost
constraint.
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Fig. 1. Example with4 objects,9 shapes, onaon-overlapping and oneancluded constraints

geost (2,

[object(1,1,[1,2], 2,612, 14),
object(2,5,[2,1], 10, 12, 22),
object(3,8,[4,1], 10,12, 22),
object(4,9,[1,1], 14, 8,22)],

[shape(1,[0,0],[2,1]), shape(1,[0,1],[1,2]), shape(1,[1,2],[3,1])
shape(2,[0,0],[3,1]), shape(2,[0,1],[1,3]), shape(2,[2,1],[1,1]),
shape(3,[0,0],[2,1]), shape(3,[1,1],[1,2]), shape(3,[2,2],[3,1]),
shape(4,[0,0],[3,1]), shape(4,[0,1],[1,1]), shape(4,[2,1],[1,3])
shape(5,[0,0],[2,1]), shape(5,[1,1],[1,1]), shape(5,[0,2],[2,1])
shape(6,[0,0],[3,1]), shape(6,[0,1],[1,1]), shape(6,[2,1],[1,1])

shape(7,[0,0],[3,2]),
shape(8,[0,0],[2,3]),
shape(9,[0,0],[1,4])],
[non-overl apping([0,1],[1,2,3,4]),included([0,1],[1,2,3,4],[1,1],[5,4])])

Its first argumene is the number dimensions of the placement space we conéisleecond
and third arguments respectively describe the four objatsthe nine shapes we have. Finally
its last argument gives the list of geometrical constraimgosed by thejeost constraint: the
first constraint expresses a non-overlapping constratatdsn the four objects, while the second
constraint imposes the four objects to be located withirbthecontaining all point$z, y) such
thatl < z < 5andl < y < 4. The geost constraint holds since the four objects do not both
simultaneously overlap in time and in space and since theyxampletely included within the
previous box (i.e., see Part (E) of Figure 1).

Within the scope of theeost(k, O, S, C) constraint, this article presents a filtering
algorithm that adjusts the minimum and maximum value of eambrdinateo.x[d],



0 < d < k of the origin of an objecb € O, adjusts also the minimum and maximum
value of its starb.start, its durationo.duration and its ent.end in time, and finally
prunes its shape variabdesid. The approach presented in this article offers a number
of advantages:

— The main theoretical advantages are fourfold:

e First, the geometrical kernel makes it possible to integregw geometrical
constraints as new applications and/or requirements sipowhis is achieved
by providing for each geometrical constraint an API withkabwing any de-
tails about the geometrical kernel. This contrasts witlitr@nal approaches
where one has to come up with a rather involved filtering aflgor for each
global constraint.

e Second, while pruning the attribute of an object, the gedoadtkernel takes
direct advantage of all geometrical constraints involvimat object in order to
perform more deduction. This is a fundamental progresstbedraditional ap-
proach where constraints only co-operate through the dwaditheir shared
variables.

e Even when we have three or four dimensions, the approacesseall since it
does not rely on building complex multi-dimensional datacture (e.g., like
quadtrees or octrees). It only stores a number of pointsiotter ofO(m - k)
wherem is the total number of objects aids the number of dimensions.

e Even if complex objects could be decomposed into boxes factwbne links
the coordinates by external equality constraints this weala lot the deduc-
tion process as illustrated by the following example of Fe2: if the shape
(see Part (A)) is decomposed into two rectanglesndr5 (see Part (C)) and
if the constraints linking the coordinates of the origing-éfandr5 are not in-
tegrated within the sweep process, infeasibility cannatibectly derived (see
Part (M)). In contrast our approach allows to detect intaifigi directly by
reasoning only on the coordinates of the origirsof

— The main practical advantages are as follows:

e Having £ dimensions allows to come up with a single constraint that lma
used for handling general non-overlapping constraints Whs originally mo-
tivated by a warehouse management problem where both twerdiional and
three-dimensional sub-problems had to be solved. In théegbof three-di-
mensional packing problems having an extra dimension akkemsense for
modelling the fact that we want to assign objects to a truclhis context we
speak about aassignment dimension — see Part (1) of Figure 3) or the fact that
we do not want to place all the objects since there may simglgdi enough
room (in this context we speak aboutehaxation dimension).

e Factoring out the description of the shapes from the desonipf an object
makes sense in a lot of practical problems where a numbestsrnes of the
same shape have to be considered (this is illustrated by(Paof Figure 3
where we have five objects but only three shapes: in fact thg fivird and
fifth objects correspond to the first shape). This again acicuthe warehouse
management problem that originally motivated the constyaihere a major
car manufacturer has to pack within the same container this pasociated
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Fig. 2. Reasoning for detecting the infeasibility of the placemenablem (dashed areas corre-
spond to initially forbidden pairs of values, while grey aseepresent forbidden pairs of values
related to some non-overlapping constraints)



with 24 instances of the same car model. By doing so we can decrease th
memory requirement (i.e., each complex shape is representy once), but
we can also reduce the running time of the algorithm as wese@l later on.

e Having a set of potential shapes for an object offers an emtrdelling power
for representing directly the fact that objects may rots¢e (Part (E) of Figure 3
where object® and3 can rotate fron90 degrees), or for dealing with tasks for
which the duration depends on the machine where the taskualcassigned
(see Part (C) of Figure 3).

e Having a temporal dimension allows to tackle dynamic plagenproblems
where objects are moving in time. Consider for instance &-pf delivery
problem where objects are loaded or unloaded from a truclewisiting dif-
ferent locations. In this context the non-overlapping ¢@ist applies only for
those objects which overlap in time. This is illustrated layt®J) of Figure 3.

The article is organised as follows. Section 2 provides ardew of placement
problems that can be modelled with thevst constraint. Section 3 introduces the ter-
minology and notation used throughout this article. Sectiqresents the overall ar-
chitecture of the geometrical kernel. It explains how tomefjeometrical constraints
in terms of a reduced set of standard primitives that are bgekde geometrical kernel.
Finally, Section 4 describes the set of geometrical comggr@urrently available. Sec-
tion 5 presents a multi-dimensional lexicographic swegprthm used for filtering the
attributes of an object of thgeost constraint. Finally Section 6 shows how to adapt the
sweep kernel to a greedy mode that is fully compatible widra®and backtrack.

2 Modelling Problems with the geost Constraint

One advantage of thgeost constraint is that is allows to model directly a large number
of placement problems by using one single global constré&iigiure 3 sketches ten
typical use of theyeost constraint, which all mention theon-overlapping constraint:

— The first case (A) corresponds to a non-overlapping comsteahong three seg-
ments.

— The second, third and fourth cases (B,C,D) correspond taneonerlapping con-
straint between rectangles where (B) and (C) are speciesagisere the sizes of all
rectangles in the second dimension are equal this can be interpreted asaa-
chine assignment problem where each rectangle corresponds to a non-pre-emptive
task that has to be placed in time and assigned to a specifiningaso that no
two tasks assigned to the same machine overlap in time. tr{Bethe duration of
each task is fixed, while in Part (C) the duration depends emthchine to which
the task is actually assigned. This dependence is exprbgsbed compatible con-
straint, which specifies the dependence between the shapbleaand the assign-
ment variable of each task.

— The fifth case (E) corresponds to a non-overlapping comsto@itween rectangles
where each rectangle can have two orientations. This ieaetiby associating
with each rectangle two shapes of respective dizesandh - [. Since their orienta-
tion is not initially fixed, theincluded constraint enforces the three rectangles to be



included within the bounding box defined by the origin’s atinatesl, 1 and sizes
8, 3.

— The sixth case (F) corresponds to a non-overlapping canshb@tween more com-
plex objects where each object is described by a given sectdmgles.

— The seventh case (G) describes a rectangle placement proldiere one has to
first assign each rectangle to a strip so that all rectanpkesatre assigned to the
same strip do not overlap.

— The eighth case (H) corresponds to a non-overlapping @instoetween paral-
lelepipeds.

— The ninth case (I) can be interpreted as a non-overlappingt@int between paral-
lelepipeds that are assigned to the same container. Thdifirehsion corresponds
to the identifier of the container, while the next three disiens are associated
with the position of a parallelepiped inside a container.

— Finally the tenth case (J) describes a rectangle placemeblgmn over three con-
secutive time-slots: rectangles assigned to the samedfiotshould not overlap in
time. We initially start with the three rectangleés2 and3. Rectangle is no more
present at instarX (the arrow| within rectangle at time1 indicates that rectangle
3 will disappear at the next time-point), while rectanglappears at instarnt(the
arrow T within rectanglel at time2 denotes the fact that the rectanglappears at
instant2). Finally rectangl@ disappears at instaBtand is replaced by rectangle

Before continuing, the next section introduces some rmiatsed throughout this
article.

3 Notation

We will be using the following terminology and notation:

Point A point is ak-dimensional coordinate.

Shifted Box A shifted box s is an entity defined by its shape idsid, shift offset
s.t[d],0 < d < k, and sizess.[[d],0 < d < k. It denotes a box irk-dimensional
space at the given offset with the given sizes.

ShapeA shapeis a collection of shifted boxes sharing the same shape id.
Object An object o is an entity defined by its unique objectdaid, shape ith.sid, and
coordinates.x[d],0 < d < k.

RegionA region r in k-dimensional space is defined by its objecticid and bound-
ariesr. min[d], r. max[d],0 < d < k.

Assumev andw are vectors of scalars é&f components. Then «— w denotes
the element-wise assignment®fto v, w + d (w — d) denotes the element-wise ad-
dition of d (—d) to w, min(v, w) (max(v,w)) denotes the element-wise min (max) of
v andw, minex (v, w) (maxjex (v, w)) denotes the lexicographic min (max) ofand
w, andw, v o w for o € {<,<,>,>} holds if the comparison holds for every ele-
ment. Given a scalaf, 0 < d < k — 1, rot(v, d, k) denotes the vectdw|d], v[(d + 1)
mod kJ,...,v[(d — 1) mod k]). Finally, the notationv <¢ w denotes the fact that
vectorrot(v, d, k) is lexicographically less than or equal to veatot(w, d, k).



geost(, [object(1,1,[2],0,1,1),0bject(2,2,[5],0,1,1),0bject(3,3,[8],0,1,1)],

A TS [shape(L,[0],[2]).shape(2,[0].[3]).shape(3.0].[1]),
[non-overlapping([0],[1,2,3])] )
3l L2 1 geoste, [object(1,1,[2,1],0,1,1),0bject(2,2,[4,3],0,1,1),0bject(3,3,[7,1],0,1,1)],
B2l v [shape(1,[0,0],[2,1]),shape(2,[0,0],[3,1]),shape(3,[0,0],[1,1])],
IR L3l [non-overlapping([0,1],[1.2,3])] )

geost(2, [object(1,1,[2,1],0,1,1),0bject(2,4,[4,3],0,1,1),0bject(3,5,[7,1],0,1,1)],
[shape(1,[0,0],[2,1]),shape(2,[0,0],[3,1]),
[shape(3,[0,01,[2,1]),shape(4,[0,0],[3,1]),
[shape(5,[0,0],[1,1]),shape(6,[0,0],[2,1]),
[non-overlapping([0,1],[1,2,3]),compatible([sid,2],[1,2,3],[1-1,2-2,3-2,4-3,5-1,6-2])] )

geostg, [object(1,1,[2,1],0,1,1),0bject(2,2,[4,2],0,1,1),0bject(3,3,[8,1],0,1,1)],
[shape(1,[0,0],[2,2]),shape(2,[0,0],[3,2]),shape(3,[0,0],[1,3])],
[non-overlapping([0,1],[1,2,3])] )

geostg, [object(1,1,[1,2],0,1,1),0bject(2,2,[6,1],0,1,1),0bject(3,4,[3,1],0,1,1)],
[shape(1,[0,01,[2,2]),shape(2,[0,0],[3,2]),shape(3,[0,0],[2,3]),
shape(4,[0,0],[1,3]),shape(5,[0,01,[3,1])],
[non-overlapping([0,1],[1,2,3]),included([0,1],[1,2,3],[1,1],[8,3])] )

geost, [object(1,1,[1,2],0,1,1),0bject(2,2,[2,1],0,1,1),0bject(3,3,[5,1],0,1,1)],
[shape(1,[0,0],[1,2]),shape(1,[1,1],[1,1]),
shape(2,[0,0],[3,1]),shape(2,[0,1],[1,1]),shape(2,[2,1],[1,1]),
shape(3,[0,0],[4,1]),shape(3,[2,1],[2,2])],
[non—-overlapping([0,1],[1,2,3])] )

geostB, [object(1,1,[2,2,2],0,1,1),0bject(2,2,[1,3,1],0,1,1),0bject(3,3,[2,6,1],0,1,1)],
[shape(1,[0,0,0],[1,2,2]),shape(2,[0,0,0],[1,3,2]),shape(3,[0,0,0],[1,1,3])],
[non-overlapping([0,1,2],[1,2,3])] )

geost@, [object(1,1,[1,1,1],0,1,1),0bject(2,2,[2,1,1],0,1,1),0bject(3,3,[4,3,1],0,1,1)],
[shape(1,[0,0,0],[1,2,3]),shape(2,[0,0,0],[2,2,2]),shape(3,[0,0,0],[2,4,1])],
[non-overlapping([0,1,2],[1,2,3])] )

geosté, [object(1,1,[1,1,1,1],0,1,1),0bject(2,2,[1,1,1,2],0,1,1),0bject(3,3,[2,1,1,1],0,1,1)],
[shape(1,[0,0,0,0],[1,1,2,1]),

o3 shape(2,(0,0,0,011,1,1,1]),

1 f q A 3 shape(3,[0,0,0,0],[1,2,2,1])],
. . [non-overlapping([0,1,2,3],[1,2,3])] )

123123

time=1 time=2 time=3

et T R TRt geoste, [object(1,1,[1,4],1,3,4),0bject(2,2,[2,2],1,2,3),0bject(3,1,[1,1],1,1,2)
al [, (4] 2 object(4,3,[1,1],2,2,4),0bject(5,1,[2,3],3,1,4)],

@, |, [shape(1,[0,0],[2,1]),shape(2,[0,0],[2,2]),shape(3,[0,0],[1,3])],
1RV 3] [non-overlapping([0,1],[1,2,3,4,5])] )

!
123123123

Fig. 3. Ten typical examples of use of thyeost constraint (ground instances)



4 Standard Representation of Geometrical Constraints

The key idea is that one has to provide for each kind of gedoagironstraint found
in C a reduced set of standard primitives that will be used by #wneetric constraint
kernel. But before describing these functions, let us firsbduce the notion diter-
nal geometrical constraint (as opposed to thexternal geometrical constraints present
in C). Given an external geometrical constraiatr;(0;) (O; C O) and its frame
FRAME|ectr;], one of its objecb € O, and one potential shapeof o, we associate
with the triple(ectr;, o, s) @ number (possiblg if the constraint is entailed) of internal
geometrical constraints (this is concretely done by priogifunctionGenlInternal Ctrs
(ectri,o0,s, FRAME]ectr;]) : (ictrs)). This stems from the fact that external geomet-
rical constraints are usually decomposed into a conjunctfemaller internal geomet-
rical constraints (and to some extend thdimensional lexicographic sweep algorithm
presented in next section handles them globally). Integeametrical constraints are
also used for representing implicit constraints (such dsshia the domain of the coor-
dinates of the origin of an object) or for representing rethmnt constraints derived from
external geometrical constraints (such as preventingaimdtion of too small holes in
the context of non-overlapping constraints when the altbwaste is very small).

The purpose of an internal geometrical constraint is to make available to the
geometrical kernel a set of infeasible points for the origfin under the assumption
thato will be assigned shapeand that constraintir; (O;) holds. In order to have a
compact representation which can be used efficiently by ¢loengtrical kernel this set
of infeasible points is defined implicitly by providing thellowing functions:

— LexInfeasible(ictr, minlex,d, k,0) : (found,p) whenminlex = true (respec-
tively false), returns the smallest (respectively largest) infeadést@ographical
point p associated with the internal geometrical constraint (according to the
fact that we prune thé@'” coordinate of the origin of objeat, i.e., the ordering
among the different dimensionsds(d + 1) mod k,...,(d — 1) mod k) com-
patible with the domains of the coordinates of the origirooff no such point
exists,found is set tofalse (otherwisefound is set totrue).

— IsFeasible(ictr, min,d, k,o,c) : (feasible, f) setsfeasible to true if point ¢ is
feasible according to the internal constraint-; if this is not the case, sefsasible
to false, and computes the forbidden regigraccording to the fact that we prune
the minimum (in = true) or the maximum fuin = false) value of thed”
coordinate ob: we first maximise the size g¢f in dimensiond — 1) mod k, then
maximise the size of in dimension(d — 2) mod & and so on until we reach the
most significant dimensios Part (A) (respectively Part (B)) of Figure 4 illustrates
the computation of the forbidden regighin the context oft = 2 andd = 0
(respectivelyl = 1).

— CardInfeasible(ictr, k, 0) : (n) returns an estimation of the numbeof infeasible
points for the origin of objeat under the assumption that constraifit- holds. This
information is used as a heuristics for ordering the intecoastraints checked by
the geometrical kernel.

Figure 5 provides the overall architecture of the systemillAstrated by the figure,
the system is decomposed into three parts respectiveljlihgitlde external geometrical



gnificant

least si
dimension

0.x[1]

f.max[1]

infeasible largest box f
(forbidden region)

smallest lexicographical ------
infeasible point

f.min[1])=c[1]

o.x[1]

infeasible points of the largest lexicographical
internal constraint _ infeasible point

gnificant

most si
dimension

o
P
L

f.max[1]
f.min[1]=c[1]

smallest lexicographical
infeasible point..... ...,

0.x[0] o fmax(0] ox[0]  most significant
) dimension
f.min[0]=c[0]
(A)
infeasible points of the largest lexicographical

internal constraint . infeasible point

-

0.x[0] f.mih[O]:c[O] D fmax(o] ox[0] least significant
dimension

ihfeasible largest box f
(forbidden region)

(B)

Fig. 4. lllustration of an internal geometrical constraint and ofvito compute the forbidden re-
gion according to the dimension for which we want to prure (the most significant dimension)

10



constraints, the internal geometrical constraints and#oenetrical kernel itself. Within
each part, pink boxes represent specific internal or extgamanetrical constraints that
will be explained in the two next sections, blue boxes regmethe services that have
to be provided in order to describe a concrete constrainhabit can be used by the
geometrical kernel, and finally green boxes describe thpgagr of the corresponding
services.

We now describe all internal and external geometrical cairgs that are currently
available within the constraint kernel. For each interraistraint we provide the set
of functions that was just presented, while for each exterastraint we show how to
reformulate it into a set of internal constraints.

4.1 Internal Geometrical Constraints Currently Available

The inbox constraint Theinbox(¢, ) constraint (according to an objecbf the geost
constraint) is an internal constraint which enforces thiatpox to be located inside the
shifted box defined by its shift offsefd], 0 < d < k, and sized[d], 0 < d < k
(i.e.,Vd € [0,k —1]: t[d] < o.x[d] < t[d] +1[d] —1).

The outbox constraint The outbox(¢,1) constraint (according to an objecbf the
geost constraint) is an internal constraint which enforces thmtpax to be located
outside the shifted box defined by its shift offggf], 0 < d < k, and sized|[d],

0<d<k(.e,3de[0,k—1]:0.x[d <t[dVo.x[d > td +1[d —1).

4.2 External Geometrical Constraints Currently Available

This section presents all the external geometrical conssraurrently available. For
each external constraint we first provide its declarativea®ics and then indicate how
to generate its corresponding internal constraints. Batelnrial constraint defines in an
implicit way a set of forbidden points for the origin of an ebj in thek-dimensional
space. As we saw in the introduction, an external constrastalways at least two
arguments that respectively correspond to dimensionsoamadifibutes of the object
and/or shapes and to the objects (i.e., objects identifi@rsyhich the constraint apply.
In order to simplify the presentation we assume without fifsgenerality that all the
dimension$), 1, ..., k—1 are mentioned in the first argument of an external constfaint

The non-overlapping Constraint

The non-overlapping (attributes, iobjects) external constraint takes as input a list of
distinct dimensions if0, 1, ...,k — 1} and a list of distinct object’s identifiers of the
geost constraint. It enforces the following condition: given twistinct objectso; =

5 |f this is not the case we can proceed as follows. Assume tteFret constraint mentions a
subset of dimension® C {0,1,...,k — 1}. Any infeasible poin{p according to the dimen-
sions of D can be extended to a set of infeasible poiRtby taking the Cartesian product of
the coordinates gb and each interval associated with the domain of the objeatumently
consider and with the dimensions that do not belonfpto

11
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Fig. 6. lllustration of algorithmLexInfeasible in the context of thénbox internal constraint,
assumingminlez = true andd = 0 (i.e., 1 is the least significant dimensiof,is the most
significant dimension): (Afound = true (line 29), (B) found = true (line 18, first iteration),
(C) found = true (line 18, second iteration), (Djound = false (line 27); dashed areas
represent set of infeasible points for the origin of the objee want to place, while red points
correspond to the smallest infeasible lexicographicahigereturned by the algorithm.
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Fig. 7. lllustration of algorithmisFeasible in the context of thénbox internal constraint, assum-
ing min = true andd = 0 (i.e., 1 is the least significant dimensiof,is the most significant
dimension): (A)feasible = false (since their is one dimensiohwherec[1] > ¢[1] + [[1] — 1,
we have f.max[j’] = o.z[j]), (B) feasible = false (since no dimensiorj’ such that
cli’l > t[j'] + 15'] — 1, we havef. max[j'] = t[j'] — 1 for the the most significant dimen-
sionj’ = 0 such thatc[j'] < t[j']), (C) feasible = false (since no dimensiog’ such that
cli’] > tly'] +Uj'] — 1, we havef. max[j'] = t[j'] — 1 for the the most significant dimension
j' = 1suchthat[j'] < t[j']), (D) feasible = true (since the point is located within the box);
dashed areas represent the computed forbidden regiorg kibi points correspond to the point
¢ given to the algorithm.
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PROCEDURE LexInfeasible(inbox(t, 1), minlex, d, k, 0) : {found, p}
1: in < true
2: for j«—0tok —1do

3:

11
12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

28

29:

30

4
5:
6:
7:
8

9:
10:

if minlex then
plj] — o.z[j] /I copy smallest lexicographical point ofz to p
else
plj] < o.x[j] /I copy largest lexicographical point ofz to p
end if
if plj) < t[j] V plj) > t[j] + L[] — 1 then
in «— false [/ outside the box since outside interval associated wittedision;
end if
: end for
. if 4n then
for j +— k — 1 downto 0 do
j —(j+d) modk /I scan dimensions by increasing order of priofity
if minlex then
if t[5'] + 5] < o.xz[y’] then
ply'] < t[5'] +1[j'] Il stops when find a dimension where the upper border (+[L) of
return {true,p} I/ the box is in the range of thg™ coordinate ob.z
end if
else
if t[j'] — 1 > o.x[j’] then
plj'] < t[j'] =1 /I stops when find a dimension where the lower border (-1) of
return {true,p} // the box is in the range of thg" coordinate ob.x
end if
end if
end for
return {false,p}
. else
return {true,p}
:end if

Algorithm 1. When minlexz = true (respectivelyminlex = false) returns the
smallest (respectively largest) infeasible lexicographpointp associated with the
inbox(t, 1) constraint according to the fact that we prunedtecoordinate of the origin

of

objecto. Setfound to true if such a point exits and téalse otherwise.
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PROCEDURE IsFeasible(inbox(t,1), min, d, k, o, c) : {feasible, f}

1: before < false
2: after «— false

3: for j«— 0tok —1do

25:

4
5
6
7
8
9

10

11

12

13

14:

15:

16

17

18

19

20

21

22

23

24

j —(j+d) modk
if min then
f-min[j'] « c[5’]
if c[5'] < t[j'] A —before then
fomax[j'] — t[j] -1
before «— true
else
f-max[j'] — o.x[j’]
if ¢[j'] > t[5'] +1[j'] — 1then
after < true
end if
end if
else
f-max[j'] — c[j']
if c[5'] > t[j'] +1[5'] — 1 A —after then
fomin[j'] — ¢[5'] + 1[5']
after «— true
else
fominlj] < o.alj']
if ¢[5'] < t[5] then
before «— true

end if
26: end if
27:  endif
28: end for

29: feasible < —(before V after)
30: return (feasible, f)

// initially no dimension;’ wherec[;j'] < t[5']
// initially no dimension;’ wherec[j'] > t[5'] + 1[j'] — 1

// scan dimensions by decreasing order of pria

Ith

/l set to thej”*" coordinate of:

/I set to the lower limit of the box minuk

/I set to infinity

/th

I set to thej”*" coordinate of:

/I set to the upper limit of the box plus

/I set to minus infinity

Il feasible is true if cis located

rity

/I within the box depicted bynbox(¢, 1)

Algorithm 2: Set feasible to true if point ¢ is feasible according to thexbox(¢,1)
constraint; if this is not the case, sétsisible to false, and computes the forbidden
regionf according to the fact that we prune the minimumif = true) or maximum

(min = false) value of thed*" coordinate ob.

PROCEDURE CardInfeasible(inbox(t,1), k, 0) : {n}
n«—1
cforj—0tok—1do

N R®ONE

n«—n-(o.z[j] —o.x[j] + 1)

end for

m«— 1

for j «— 0tok —1do
m «— m - max(0, min(o.z[j], t[j] + I[j] — 1) — max(o.z[j], t[j]) + 1)
. end for
Lreturn n—m

[/l volume of the intersection between the box and the orifin

[/ volume of the domain of the origin af

Algorithm 3: Returns the number of infeasible points for the origin of objeatunder
the assumption that tHebox(¢, 1) constraint holds.
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PROCEDURE LexInfeasible(outbox(t, 1), minlez, d, k, o) : {found, p}
1: for j«—O0tok —1do

2:  if o.z[j] < tlj] V o.x[f] > t[j] + I[j] — 1 then
3: return {false,p}

4. endif

5: if minlex then

6 plj] — max(t[j], o.x[j])

7. else

8 plj] — min(tlj] +ils) - 1,0.2[j])

9: endif

10: end for

11: return {true,p}

Algorithm 4: When minlez = true (respectivelyminlex = false) returns the
smallest (respectively largest) infeasible lexicographpointp associated with the
outbox(t,1) constraint according to the fact that we prune e coordinate of the
origin of objecto. Setfound to true if such a point exits and téalse otherwise.

PROCEDURE IsFeasible(outbox(t, ), min, d, k, o, ¢) : {feasible, f}

1. forj < 0tok —1do

2: if ¢[j] < t[j] Vv clj] > t[j] +1[j] — 1 then

3: return (true, f)  // exit since point is feasible according to theutbox constraing
4:  endif

5: if min then

6: f.min[j] < c[j] I set to thej™ coordinate ot
7 f.max[j] < min(o.z[j], t[j] + 1[j] — 1) //set to thej*" upper limit ofoutbox(t, )
8. else

9 f.max[j] « c[j] /I set to thej™ coordinate of:
10: f.min[j] < max(o.z[j], t[5]) Il set to thej*" lower limit of outbox(t, 1)
11: endif T
12: end for
13: return (false, f)

Algorithm 5: Set feasible to true if point ¢ is feasible according to thbox(¢,1)
constraint; if this is not the case, sdtasible to false, and computes the forbidden
regionf according to the fact that we prune the minimumif = true) or maximum
(min = false) value of thed"" coordinate ob.

PROCEDURE CardlInfeasible(outbox(¢,1), k, 0) : {n}

ILn<1

2: forj«0tok —1do_

3 nen- (minoaf],tj) + 1lj] — 1) — max(oalj], ti)) + 1)
4: end for T

5: return n

Algorithm 6: Returns an estimation about the numheof infeasible points for the
origin of objecto under the assumption that thetbox(¢, ) constraint holds.
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object(id;, sid;, x;[], start;, duration;, end;) ando; = object(id;, sid;, z;[], start;,
durationj, end;) (id;,id; € iobjects) such that both objects overlap in time
(i.e., end; > start; A end; > start; A duration; - duration; > 0), no shifted
box s; = shape(sid;, t;[],1;[]) (with shape identifiesid;) should overlap any shifted
box s; = shape(sid;,t;[],1,[]) (with shape identifiesid;) (i.e.,3d € [0,k — 1] :
ozxz[d] + Sltz[d] + Sllz[d] S Oj.Ij[d] + Sjtj[d] \Y Oj.Ij[d] + Sjtj[d] + Sjlj[d] S
0;.%;[d] + s;.t;[d] V s,.1;[d] - s;.1;[d] = 0). Before describing the internal constraints as-
sociated with thewon-overlapping constraint, we must first define the notiorrefative
forbidden regions and ofabsolute forbidden regions.

4.2.3.1 Forbidden Regions

Letline(z,!) denote a line segment with originand length. Two line segments with
fixed boundariedine(x, ) respectivelfline(z’, I’) overlap if and only if

r+l>a AN +1 >« Q)

Suppose now that’ varies over the intervak’, 2/]. Then ifline(x, I) overlaps with
both line(2’, 1) andline(z’,1’), thenline(x,!) also overlaps witHine(y, ") for any
valuez’ < y < z’. From (1) we get thaline(z, [) overlaps with botHine(2’, ) and
line(a/,1") if and only if:

c+l>d AN+ >ene+l> AN+ >z

which simplifies to: o
+U>chz+1>7a

zefr —1+1,2 +1 —1] (2)

We call the interval in the right hand side of (2) tfeebidden region of line(z, 1) wrt.
line(z’,1"), i.e. the set of valueE such thatifx € V then for any value’ in its interval,
the two lines will overlap.

Note that the forbidden region does not depend:pbut does depend ahin its
left boundary. For purposes of factoring out parts of the jgotation, we introduce the
notionrelative forbidden region of line(z’, ") as the intervalz’ + 1,2’ + 1’ — 1]. That
is, it does not depend dime(z, 1) at all (i.e., in fact it assumes thihe(z, 1) is reduced
to a single point] = 0).

The notion of (relative) forbidden region generalises rety to & dimensions, de-
noting a region where the origin of an object cannot be plagigdout causing it to
overlap with some other object.

4.2.3.2 Generating the Internal Constraints Associated \th the non-overlapping
Constraint

Within  the filtering algorithms, the function RelForbReg(iobjects,S)
computes the setR of all relative forbidden regions. The procedure

17



InitFrameExternalConstraint(non-overlapping (attributes, iobjects), ©O,S)  calls
the functionRelForbReg(iobjects, S). InitFrameExternalConstraint is called each
time we wake theeost constraint (see line 5 of procedurdterCtrs).

RelForbReg(iobjects, S) = { r ‘ Jo € iobjects A Is € S A s.sid € dom(o.sid)A

r.oid = o0.0idA
r.min = 0.z + s.t + 1A

r.maxz%—l—s.t—i—s.l—l}

AbsForbReg(o, R,S) = { r’ ’ dre RAds € S A s.sid = o.sidA
r’.oid = r.0id # o0.0idA
r/.min = 7. min —s.t — s.IA
7. max = r. max —s.tA

dom(o.z) N1’ # @}

The functionAbsForbReg(o, R, S) computes the set of relevant forbidden regions,
associated with each object and the shifted boxes belongiitg potential shapes, for
a given objecb. To each relevant forbidden region correspondswatbox constraint.
When we try to filter the coordinates of an objecthe functionAbsForbReg(o, R, S)
is called by GenlnternalCtrs(non-overlapping(attributes, iobjects), 0,0, S,
FRAME) for computing the absolute forbidden regionscoaccording to all other
objects and generate the correspondingbox constraints (see line 6 of procedure
FilterObj).

5 The Geometrical Kernel: a Generick-Dimensional
Lexicographic Sweep Algorithm

This section first presents the sweep algorithm used forifiiehe co-ordinates of the
origin of an object of theeost constraint, then shows how to extend the algorithm in
order to prune the origin, duration and end attributes oftgaa. Finally it shows how
to control the sweep algorithm in order to rapidly find a solubr a relaxed solution.

5.1 The Sweep Algorithm

This algorithm first considers all internal geometrical siwaintsZC,, derived fromC
whereo actually occurs, and then performs a recursive traverghlegplacement space
for each coordinate, each direction (i.min or max) and each potential shapec
dom(o.sid). Without loss of generality, assume we want to adjust thémmim value
of thed'" coordinatev.z[d] 0 < d < k of the origin ofo according to the hypothesis that
the shape oé is fixed tos. The algorithm starts its recursive traversal of the plagam
space at point

¢ =rot(o.z,d, k) = (0.z[d],0.x[(d+ 1) mod kl,...,0.x[(d —1) mod k])
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and could in principle explore all points of the domainsaf, one by one, in in-
creasing lexicographic order, until a point is found thatas infeasible for any internal
constraint, in which case{0] is the computed lower bound. To make the search effi-
cient, instead of moving each time to the successor poingnvange the search so that
it skips points that are known to be infeasible for some maeconstraing.

Example 3. To illustrate the idea on a 2-D case, consider Figure 8. Sagfimt both coordinates
(z,y) range ovef2, 6] and that we have two sets of infeasible points corresportdirgctangular
regionsr; andrs:

ri.min = (2,2),r;. max = (3,4)

re.min = (1,4), r2. max = (4,6)

Let us simulate a search for a point that is not ingider r».

1. Initialise. We start at the minimal value of the coordinates.y) — (2,2).

2. Check and move.(z,y) € r1, and the next point that is outside is (2, 5), so(x,y) «
(2,5).

3. Check and move.(z,y) € r2, and the next point after that is outsiggis (2, 7), which is
outside the coordinate domain. So now we know that there feasible point forx = 2.
We also know that the forbidden regions encountered duhiagéarch wherge = 2 cover
all points forz = 3 as well. So(z,y) < (4, 2), the next point that is inside the coordinate
domain and not yet known to be in any forbidden region.

4. Check.(z,y) & 1, (z,y) & r2, and we are done.

1 2 3 4 5 6

Fig. 8. Search for a feasible point

Thus we compute the lexicographically smallest pefirguch that:

1. ¢ is lexicographically greater than or equalto

6 Potential holes in the domains are reflected in internaltcaimss.
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2. every element of is in the range of the corresponding element.of(i.e., 0.2z <
¢ <07x),

3. ¢ is not infeasible according to the current status of anyriretegeometrical con-
straint ofZC,,.

If no suchc’ exists, we remove from the shape variable efd the values that was our
current hypothesis for the shapeoqfand fail if s was the only possible value forsid).
Otherwise the minimum value ofz[d] is adjusted to the most significant element’of
(i.e.,'[0] is the computed lower bound).

As we saw our sweep algorithm moves in increasing lexicdgcaprder a point
¢ from its lexicographically smallest potential feasiblesjtion to its lexicographically
largest potential feasible position through all potenpiaints. The algorithm uses the
following two data structures:

— A data structure called th&veep-point status, which contains some information
related to the current positianof the sweep-point:

e All internal constraints fromZC, that can potential interact with
the current position of the sweep-point (i.e., the set of active
internal constraints). This corresponds to all internal constraints
ictr, € ZIC, such thatLexInfeasible(ictr,,true,d,k,0) <jez ¢ <jew
LexInfeasible(ictr,, false, d, k, o).

e Avectorn[0..k — 1] that caches knowledge about already encountered sets of
infeasible points while moving from its first potential feasible position. The
vectorn is always element-wise greater thaand maintained as follows. Let
inf, sup denote the vectonisf = rot(o.z, d, k) andsup = rot(o.z + 1,d, k):

x Initially, n = sup.
x Whenever a set of infeasible pointsuch that € f is found,n is updated
by taking the element-wise minimal value ofand the end coordinate
of rot(f, d, k), indicating the fact that new candidate points can be found
beyond that value.
* Whenever we skip to the next candidate point, we reset theezits ofn
that were used to the corresponding valuesipf
The following invariant holds for the vectar, and is used when advancing
to the next candidate point. Lébe the smallest such that

nlj+ 1] =sup[j + 1] A+ An[k — 1] = sup[k — 1]

and suppose is known to be in some set of infeasible points. Then the next
point, lexicographically greater thanand not yet known to be in any set of
infeasible points, is:

(c[0],...,c[t = 1],n[i],inf[i + 1], ..., inf[k — 1])

— A data structure named tlegent point series, which holds the events to process, or-
dered in lexicographically increasing order. These eventiespond to the lexico-
graphically smallest poiftexInfeasible(ictr,, true, d, k, o) associated with each
internal constrainictr, € ZC,. These events are stored in a heap so that we can
extract them in lexicographically increasing order.
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Example 4. Figure 9 illustrates thé-dimensional lexicographic sweep algorithm in the context
of k = 2. Parts (A) and (B) provide the variables of the problem (itlee abscissa and ordi-
nate of each rectangle, r2, r3, 74 andrs) as well as the non-overlapping constraint between
the five previous rectangles. On Parts (D) to (L) we have ssmied the extreme possible feasi-
ble positions of each rectangle (i.e., rectangieso r4): for instance the leftmost lower corner
of rectangler; can only be fixed at positiond, 2), (1, 3), (1,4), (2,2), (2,3), (2,4), (3,2),
(3,3), (3,4), (4,2), (4,3) and (4, 4). Parts (C) to (L) of Figure 9 detail the different steps of
the algorithm for adjusting the minimum value of the abszigkrectangle's. Part (C) provides
the internal constraints associated with the fact that wet weaprune the coordinates of: con-
straintsctr, ctre, ctrs and ctry4 respectively correspond to the fact that rectangleshould
not overlap rectangles,, 2, r3 andr4, while constraintctrs represents the fact that the ordi-
nate ofrs should be different fronY. Each of these five internal constraints corresponds to an
outbox([og, sz], [0y, $y]) constraint enforcing that the two conditions € [0z, 0z + sz — 1]
andys € [oy, 0, + sy — 1] are not both true. Part (D) represents the initialisatioasghof the
algorithm where we have inserted into the heap all five irstleconstraints with their respective
lexicographically smallest feasible point (i.¢€L, 1) for ctry, (1,3) for ctra, (1,7) for ctrs,
(1,8) for ctrs and(3, 1) for ctra). Part (E) represents the first step of the sweep-point idhgor
where we start the traversal of the placement space at peintl, 1). We first transfer from the
heap to the list of active internal constraints all interc@istraints for which the first lexicograph-
ically smallest infeasible point if lexicographically gter than or equal to the current position
of the sweep-point = (1, 1) (i.e., constraintctr; = outbox([1, 2], [1,2])). We then search
through the list of active constraints (represented on thedi by a box with the legend ACTRS
on top of it) the first constraint for whick = (1, 1) is infeasible. In fact, sincetr; is infeasible
(represented on the figure by a box with the legend CONFLICTopnof it) we compute the
feasible vectoyf = (3, 3) that tells how to get the next feasible point in the differgimiensions.
Consequently the sweep-point moves to the next posftioB) (see Part (F)) and the process is
repeated until we finally find a feasible sweep-point for miérnal constraints (i.e., poiii8, 8)

in Part (L)). Observe that, when the lexicographically é&stginfeasible point associated with an
active internal constraint is lexicographically strictgss than the position of the sweep-point,
we remove that constraint from the list of active internaistoaints. This is for instance the case
in Part (), where we remove constraittt-s from the list of active internal constraints (i.e., since
its lexicographically largest infeasible poifi, 8) is lexicographically smaller than the position
of the sweep-point = (3, 1)).

Algorithms 7 through 12 implement this idea. The algorithpnsne the bounds
of each coordinate of every object wrt. its relevant intéganstraints, iterating to
fix-point. Given a point and a list of active internal constraisCT'R.S, Algorithm 7
looks for an internal constrairittr of ACTRS such that the point is infeasible for
constraintictr. If such a constraint can be found, Algorithm 7 returns theesponding
forbidden regionf. Algorithm 8 filters all objects according to all externabgeetrical
constraints where they are currently involved. It consiéta first phase that initialises
for each geometrical constraint and for its objects a datesire describing this ob-
ject versus that constraint. A second phase tries to prliodjelcts. In order to reach a
fix-point, the process is started again until no pruning e€eamymore.

5.2 Handling Time

Given an objecb; = object(id, sid, o[], start, duration, end) of a geost constraint,
the sweep-point algorithm that we have introduced in theiptes section can be easily
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VARIABLES EXTERNAL CONSTRAINT (non-overlapping) INTERNAL CONSTRAINTS GENERATED

x1in1l.4,ylin2..4 geost( [object(1,1,[x1,y1],0,1,1),0bject(2,2,[x2,y2],0,1,1), FOR FILTERING THE ORIGIN OF THE
X2in4.4,y2in 6.6 object(3,3,[x3,y3],0,1,1),0bject(4,4,[x4,y4]0,1,1), FIFTH OBJECT, i.e. (x5,y5) (ICTRS)
x3in2..4,y3in 8..9 object(5,5,[x5,y5],0,1,1)], ctrl: outbox([1,1],[2,2]) ctr3: outbox([1,8],[2,1])
x4in7.7,y4in1..1 [shape(1,[0,2],[0,1]),shape(2,[0,3],[0,1]),shape(3,[0,1],[0,1]), ctr2: outbox([1,3],[6,4]) ctr4: outbox([3,1],[5,3])
x5in 1..8,y5in 1..8, y5<>7 shape(4,[0,1],[0,3]),shape(5,[0,5],[0,4])], ctr5: outbox([1,7],[8,1])
[non-overlapping([0,1],[1,2,3,4,5])] )
(A (B) ©)
:—I;EIAPd' el SWEEP POINT: ¢=(1,1) SWEEP POINT: ¢=(1,3)
elayed internal HEAP HEAP
10 W constraint-smallest 10 W 10 W
9 3 3 infeasible point) 9 3 3 ctr2-[1,3] 9 3 3 ctr5-[1,7]
Y RN Lo IR T I I S I I IS S
7 o 1’3 7 ctr3-[1,8] 7 ctr4-[3,1]
6 otr2-{1,3] 6 ctr4—[3,1] S L |
5 ctr5-[1,7] 5 i R - ACTRS
4 ctr3-[1,8] 2 1 ACTRS 4I| 1 I 1 | ctr2—[6,6]
2 ACTRS | coNFLICT 2 Z[ ] Jra| | conruict
1 (active internal 1 1 T
* * constraint-largest —
12345678 yeasible poin) 12345678 12345678
®) L] > ® >
SWEEP POINT: ¢=(1,7) SWEEP POINT: ¢=(1,8) SWEEP POINT: ¢=(3,1)
10 HEAP 10 HEAP 10 HEAP
3 I3 ctr3-[1,8] 9 r - 9
3 . I P trd—[3,1] 8 r I. 8
-~ wa_Lrg) ord-3.11 3 ACTRS ; ACTRS
ACTRS 6 ctr3-{2,8] 6
5 ctr5-[8,7] 5 ctr5-[8,7] 5
4 ctr2-[6,6] 2 ctr2-[6,6] 2
ctrl-[2,2 ctrl-[2,2 |
3 2.2] 3 | 22 3 | conFLicT
2 CONFLICT 2 | conFLICT 2 2
1 : P 1 P 1
L 4
1 2 3 456 78 123456 738
? ©) : (H)
SWEEP POINT: c¢=(3,4) SWEEP POINT: ¢=(3,7)
10 HEAP 10 HEAP 10 HEAP
9 3l 43 9 a3 9
8 r r Lo 8 r r 8
wal sl ACTRS A ACTRS ACTRS
7 7 o 7
6 " oy I I ctr4-[6,6] I ctr4-[6,6] 6 ctr4-[6,6]
5 R : ctr5-[8,7] 5 L ctr5-[8,7] 5 ctr5-[8,7]
40 1o ctr2-[6,6] 4 [H | |er2-18.61 4 | |e2-18.61
3 R 3 P 3
N CONFLICT M | CONFLICT | CONFLICT
2 . [z ] 2 :

A3 456 78 A3 456 78 ﬁ/f/f‘3‘4‘5678
(J)i (K L)

Fig. 9. lllustration of the sweep algorithm for adjusting the minim value of the abscissa of
rectanglers
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PROCEDURE GetFR(d, k,0,c, ACTRS, increase) : {bool, region}

1: if increase then

2:  if dictr € ACTRS | (false, f) = IsFeasible(ictr, true, d, k, o, c¢) then
3: return (true, f)

4. else

5: return (false, f)

6: endif

7. else

8: if Jictr € ACTRS | (false, f) = IsFeasible(ictr, false, d, k, o, c) then
9: return (true, f)

10: else

11: return (false, f)
12:  endif
13: end if

Algorithm 7: Is a pointc infeasible according to any currently active internal getnn
cal constraints (i.e., the internal constraintsA@f T'R.S)? We currently try to prune the
minimum (increase = 1) or the maximumdncrease = 0) of o.z[d].

PROCEDURE FilterCtrs(k, O, S,C) : bool

1: nonfiz < true /I fix-point not yet reached
2: while nonfiz do
3. nonfiz + false /I assumes no filtering will be done

4. forall ectr € Cdo

5: FRAME]|ectr] < InitFrameExternalConstraint(ectr, O, S)
6: endfor

7. forall o€ Odo

8 if ~FilterObj(k, o, FRAME, S) then

9: return false /I no feasible origir)
10: else ifo.x was prunedhen
11: nonfiz — true /I has to saturate once again
12: end if
13:  end for
14: end while
15: return true /I feasible origin

Algorithm 8: Main filtering algorithm associated with tlyeost (k, O, S, C) constraint,
wherek, O, § andC respectively correspond to the number of dimensions, t@khe
jects, to the shapes and to the external geometrical camstra
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PROCEDURE FilterObj(k, o, FRAME, S) : bool

1: ICTRS — 0 /' build the list of internal constraints attachedstp
2: ford—0tok—1do
3:  ICTRS « ICTRS | possible outbox constraints corresponding to holes:of]

/' holes correspond to adjacent forbidden valuedwf (o.z[d])
4: end for
5: for all external geometrical constraintstr involving o do
6: ICTRS « ICTRS |J GenlnternalCtrs(ectr, 0,0, S, FRAME]ectr])
7: end for
8 ford —0tok—1do
9: if =PruneMin(o, d, k, ICTRS) V —=PruneMax (o, d, k, ICTRS) then

10: return false /I no feasible origin
11:  endif
12: end for
13: return true // feasible origin

Algorithm 9: Filtering all thek coordinates of a given objeataccording to all exter-
nal geometrical constraints wheseoccurs; FRAME [ectr]| corresponds to a possible
frame associated with an external constraint, whilis the set of shapes of theost
constraint.

PROCEDURE NewPruneMin(o,d, k, ICTRS) : bool
1 b« true /I b = true while we have not failed
c— 0. /l'initial position of the point
n«—ozx+1 /I upper limits+1 in the different dimensions
. (infeasible, f) — GetFR(d, k, 0, ¢, [CTRS, true)
while b A infeasible do

n < min(n, f. max +1)

(¢,n,b) «— AdjustUp(c,n,o0,d, k)

(infeasible, f) «— GetFR(d, k, 0,c, ICTRS, true)
: end while
10: if bthen
11:  o.z[d] < ¢[d]
12: end if
13: return b

CoNoakr®NE

Algorithm 10: Adjusting the lower bound of thé?” coordinate of the origin of object
o; ICTRS is the set of internal constraints associated with object
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PROCEDURE PruneMin(o, d, k, ICTRS) : bool
1
2:
3:

12:
13:
14:

15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:

. for all ictr € ICTRS do

Soow~Noas

InsertInMinHeap(HEAP, ictr, m) /I insert only if at least one infeasible poi

end if

: end for
[l transfer from the heap to the list of active internal comists
: ACTRS «— empty // all internal constraints that can interfere witl gosition ofc

b < true /I b = true while we have not faile
c— 0. /l'initial position of the point
n<«—ox+1 /I upper limits+1 in the different dimensio

/I insert within the heap all internal constraints/afTRS
/I and sort them on their smallest infeasible peinaccording to the pruning dimensiah
HEAP «— empty

(found, m) < LexInfeasible(ictr, true, d, k, 0)
if found then

while NonEmptyHeap( HEAP) A SmallestElemHeap( HEAP) <{ ¢ do
ACTRS «— ACTRS |J GetAndRemoveSmallestElemHeap( HEAP)
end while
/I check if there is an active constraint for whicls infeasible
/l'if this is actually the casef, will contain the forbidden region that allows to jun
(infeasible, ) «— GetFR(d, k,0,c, ACTRS, true)
while b A infeasible do

n < min(n, f.max +1) /I updating the vecton according tof
(e,n,b) «— AdjustUp(c, n,o0,d, k) [/l update position of point to check|
remove from ACTRS all internal constraints  ictr|c >

LexInfeasible(ictr, false, d, k, 0)
/I and possibly transfer new internal constraints thatfate with the new position af
while NonEmptyHeap( HEAP) A SmallestElemHeap( HEAP) <{ ¢ do
ACTRS «— ACTRS |J GetAndRemoveSmallestElemHeap(HEAP)
end while
(infeasible, f) «— GetFR(d, k, 0,c, ACTRS, true) /I check again it is infeasible
end while
if bthen
o.x[d] < c[d]
end if
return b

Algorithm 11: Adjusting the lower bound of thé’" coordinate of the origin of object
o; ICTRS is the set of internal constraints associated with ohject
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PROCEDURE AdjustUp(c,n, 0,d, k) : (int[], int[], bool)

1: for j < k — 1 downto 0 do

2 j «—(j+d) modk // rotation wrt.d, k

3 j'] — n[j'] Il use vector to jump

4 nlj'] —oz[j'] +1 I reset component of to maximum value

5. if ¢[j'] < oz[j'] then

6: return (c, n, true) /I candidate point found (since did not exceed upper limit)
7. else

8: cli’] < o.z[j’] /I since exhausted a dimension reset componeat of
9: endif
10: end for
11: return (¢, n, false) /I no candidate point found

Algorithm 12: Moving up to the next feasible point

adapted in order to handle the start in timestart, duration in timeo,.duration and
end in timeo,.end. Beside maintaining bound consistency for the constrgintd =
o0;.start + o;.duration, we add an extrame dimension to the geometric coordinates of
objecto;: when we adjust the minimum or maximum value of a geometrardinate

of o; or when we adjust the minimum value of.start (CASE 1) we set this new
time coordinate t@;.start. Otherwise, when we want to adjust the maximum value of
o;.end (CASE 2), we set this extra time coordinatedioend. Now, in the context of
CASE 1, each time we need to compute the set of infeasiblapfmnthe coordinates
of o; according to a second objeet we first compute the set of time-poirts; for
the start ofo;, so that if the start in time od; is fixed to a value ofZ;;, o; ando;
overlap in time. The set of pointg; corresponds to the points of interval.start —
o0;.duration + 1, 05.end — 1]. If this interval is empty, then the set of infeasible points
for the coordinates of; according tw; is empty. In the context of CASE 2, each time
we need to compute the set of infeasible points for the coatds ofo; according to

a second objeat;, we first compute the set of time-points for the endvpfso that

if the end in time ofo; is fixed to one of these time-points;, ando; overlap in time.
As before if this set is empty, then the set of infeasible fsoiar the coordinates af;
according tw; is empty.
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PROCEDURE PruneMax(o, d, k, ICTRS) : bool
1
2:
3:

15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:

. forall ictr € ICTRS do

Soow~Noas

: end for

: ACTRS «— empty [/ all internal constraints that can interfere witb gosition ofc
12:
13:
14:

b < true /I b = true while we have not failed
c—0ox /l'initial position of the point
n«—ozx—1 /I'lower limits-1 in the different dimensions

/I insert within the heap all internal constraints/afTRS
/I and sort them on their largest infeasible pointiccording to the pruning dimensiahn
HEAP «— empty

(found, m) <« LexInfeasible(ictr, false, d, k, o)
if found then

InsertInMaxHeap(HEAP, ictr,m) /I insert only if at least one infeasible point
end if

[ transfer from the heap to the list of active internal comists

while NonEmptyHeap( HEAP) A LargestElemHeap( HEAP) >¢ ¢ do
ACTRS «+— ACTRS |J GetAndRemoveLargestElemHeap( HEAP)
end while
/I check if there is an active constraint for whicls infeasible
/l'if this is actually the casef, will contain the forbidden region that allows to jump
(infeasible, ) «— GetFR(d, k,o0,c, ACTRS, false)
while b A infeasible do

n < max(n, f.min —1) // updating the vecton according tof
(¢,n,b) «— AdjustDown(c, n, o0, d, k) /I update position of point to check|
remove from ACTRS all internal constraints  ictr|c <

LexInfeasible(ictr, true, d, k, 0)
/I and possibly transfer new internal constraints thatfate with the new position af
while NonEmptyHeap( HEAP) A LargestElemHeap( HEAP) > ¢ do
ACTRS — ACTRS |J GetAndRemoveLargestElemHeap( HEAP)
end while
(infeasible, ) «— GetFR(d, k, 0,c, ACTRS, false) /I check again it is infeasible
end while
if bthen
o.x[d] « c[d]
end if
return b

Algorithm 13: Adjusting the upper bound of th&" coordinate of the origin of object
o; ICTRS is the set of internal constraints associated with ohject
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PROCEDURE AdjustDown(c, n, o, d, k) : (int[], int[], bool)

1: for j < k — 1 downto 0 do

2. j «—(j+d) modk
3 ] —nlj]

4 nff] —oxlf'] -1
5. if ¢[j'] > o.z[j'] then
6: return (c, n, true)
7. else

8 c[j] — ozl

9: endif

10: end for

11: return (¢, n, false)

/I rotation wrt.d, k

Il use vectorm to jump

I/l reset component of to minimum value

/I candidate point found (since not under lower lin

/I since exhausted a dimension reset componeat

/I no candidate point foun

nit)

of

Algorithm 14: Moving down to the next feasible point
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6 Support for Greedy Assignment within the geost Kernel

6.1 Motivation and Functionality Description

Since, for performance reasdnshe geost kernel offers a mode where it tries to fix
all objects during one single propagation step, we providato specify a preferred
order on how to fix all the object$n one single propagation st€his is achieved by:

— Fixing the objects according to the order they were pass#tktgeost kernel.
— When considering one object, fixing its shape variable abasgdts coordinates:
e According to an order on these variables that can be eXplgpecified.
e A value to assign that can either be the smallest or the lavgése, also spec-
ified by the user.

This is encoded by a term that has exactly the same strucsutieeaterm asso-
ciated to an object oficost. The only difference consists of the fact that a vari-
able is replaced by an expressigf® min(7) (respectivelymax(1I)), wherel is
a strictly positive integer. The meaning is that the coroesfing variable should
be fixed to its minimum (respectively maximum value) in theler/. We can
in fact give a list of vectors,vs, ..., v, in order to specify how to fix objects
Ol+4p-a>024p-as - - - s Optp.o. ThiS is illustrated by Figure 10: for instance, Part (1)
specifies that we alternatively (1) fix the shape variablerobbject to its max-
imum value (i.e., by usingnax(1)), fix the z-coordinate of an object to its its
minimum value (i.e., by usinghin(2)), fix the y-coordinate of an object to its its
minimum value (i.e., by usingin(3)) and (2) fix the shape variable of an object
to its maximum value (i.e., by usingax(1)), fix the z-coordinate of an object
to its its maximum value (i.e., by usingax(2)), fix the y-coordinate of an ob-
ject to its its maximum value (i.e., by usingax(3)). In the example associated
with Part (I) we successively fix objects, o2, 03, 04, 05, 0g by alternatively us-
ing strategies (1) (i.egbject(_, max(1), z[min(2), min(3)]) and (2) (i.e., vector
object(_, max(1), z[max(2), max(3)]).

From an implementation point of view the main modificatiboonsists of modifying
lines 8 and 9 of'ilterObj (see Algorithm 9) in order to follow the ordering imposed
by the list of vectors), vs, . . ., v,,. This is detailed in the next section.

" Experiments have shown that this allows to reduce signifigdroth the time and the memory
consumption.

8 This is only a preference that the kernel may not complewlg\ for implementation or per-
formance reasons. For instance, as we will see in the nettosethe current implementation
fix always the shape variable first.

® This is in fact not incompatible from using specific heudstiat each choice point of the
search space the idea is to first try to fixes every object withie single propagation step and,
if this leads to failure, propagate and use the specific besiwritten in Java or in Prolog
depending on the constraint system you are using.

10 The character denotes the fact that the corresponding attribute is iragie since for instance,
we know that it is always fixed.
11 Beside fixing the shape variable.
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object(_,min(1),[min(3),min(2)]) object(_,min(1),[max(3),min(2)]) object(_,min(1),[min(3),max(2)]) object(_,min(1),[max(3),max(2)])
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0] ©)

Fig. 10.lllustration of possible heuristics for fixing all objectstiain one single propagation step
and their corresponding parameters in the context of twedsions.
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6.2 Implementation

The greedy algorithm for fixing an objeetis controlled by a vectow of lengthk + 1
such that:

— The shape variable.sid should be set to its minimum possible valuef] < 0,
and to its maximum possible value otherwise.

— abs(v[1]) — 2 is the most significant dimension (the one that varies theest)
during the sweep. The values are tried in ascending ordét if< 0, and in de-
scending order otherwise.

— abs(v[2]) — 2 is the next most significant dimension, and its sign indie#te value
order, and so on.

For example, a ternobj ect (_, min(1),[max(3),m n(4),max(2)]) is
encoded as the vectpr1,4,2, —3].

PROCEDURE FixAllObjs(k, O, S,C,v) : bool
1: for all ectr € C do

2:  FRAME]|ectr] «+ InitFrameExternalConstraint(ectr, O, S)
3: end for
4: forall o € O do
5. if =FixObj(k, o, FRAME,S,v) then
6: return false
7. else
8: for all external geometrical constraintstr involving o do
9: FRAME]|ectr] < InitFrameExternalConstraint(ectr, O, S) /I update the
relative forbidden regions
10: end for
11:  endif
12: end for

13: return true

Algorithm 15: Fixing all the objects, wherg, O, S andC, v respectively correspond
to the number of dimensions, to the objects, to the shapéketexternal geometrical
constraints and to the controlling vector. Within the cahtd the greedy mode, this al-

gorithm replaces Algorithm 8 (i.eEilterCtrs) that is used in the standard propagation
mode.
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PROCEDURE FixObj(k, 0, FRAME,S,v) : bool
if v[0] < 0then

0.sid < 0.sid
else

0.s1d — o.sid
end if
ICTRS — 0 /' build the list of internal constraints attachedstp
ford < 0tok —1do

ICTRS «— ICTRS | possible outbox constraints corresponding to holes ]

/' holes correspond to adjacent forbidden valuedwf (o.z[d])

9: end for
10: for all external geometrical constraintstr involving o do
11: ICTRS < ICTRS |J GenlnternalCtrs(ectr,o, O, S, FRAME[ectr])
12: end for
13: return PruneFix(o,d, k, ICTRS,v[1..k]) I/ we pass the vectar|1..k] since we have t
remove positior) which corresponds to the shape id

1=

Algorithm 16: Fixing all thek coordinates of a given objeataccording to all external
geometrical constraints whes@ccurs;FRAMFE|ectr] corresponds to a possible frame
associated with an external constraifitis the set of shapes of theost constraintp

is the controlling vector.
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PROCEDURE PruneFix(o, k, ICTRS,v) : bool
1: for d «— k — 1 downto O do
d' — abs(v[d]) — 2
if v[d] < 0then
c[d'] «— o.x[d] /1 initial position of the point

n[d'] « o.x[d'] +1 /1 initial next feasible pos
else
c[d'] — o.z[d] Il initial position of the point
n[d] « o.x[d] —1 I/ initial next feasible pos
end if
10: end for
11: (infeasible, f) — GetFR(abs(v[0]) — 2, k, 0,¢, I[CTRS, true)
12: while infeasible do
13: for d < k — 1 downto O do
14: d' «— abs(v[d]) — 2

15: if v[d] < 0then

16: n[d’] < min(n[d'], f. max[d'] + 1) Il update next feasible pos wif.
17: else

18: n[d'] « max(n[d’], f.min[d'] — 1) I update next feasible pos wit.
19: end if

20:  end for

21: for d +— k — 1 downtoOdo
22: d' — abs(v[d]) — 2

23: cld'] — n[d’] Il use vectom to jump
24: if v[d] < 0then

25: n[d'] «— oz[d] + 1 Il reset component of to beyond limit
26: if c[d'] < n[d’] then

27: goto nextcand /I new candidate point found
28: else

29: cld'] +— o.z[d] I since exhausted a dimension reset componeat of
30: end if

31: else

32: n[d'] — o.z[d'] — 1 /I reset component of to beyond limit
33 if c[d'] > n[d’] then

34: goto nextcand /I new candidate point found
35: else

36: cld'] « oz[d'] /I since exhausted a dimension reset componeat of
37: end if

38: end if

39:  endfor

40: return false /I no candidate point found

41: label : nextcand

42:  (infeasible, f) < GetFR(abs(v[0]) — 2, k, 0, ¢, ICTRS, true)
43: end while

44: o.x +— ¢

45: return true

Algorithm 17: Fix completely all the coordinates of the origin of objegtby first
starting to fix thglabs(v[0]) — 2)-th coordinate of object; ICTRS is the set of internal
constraints associated with objectv is the controlling vector.
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Geost Constraint Tutorial

Rida. S. Sadek
September 12, 2007

1 Introduction

The geost constraint is a global constraint that handle generically a variety of geometrical con-
straints.

The geost(K, O, S, C) constraint is given set of parameters which will define the environment
of geost. The parameters are as follows:

K: The space dimension of the geometric objects to be handled.

O: The polymorphic (each object can have many shapes) K-dimensional objects.
S: The set of shapes that each object can have.

C': The set of geometrical constraints.

In the remaining of this tutorial we will explain by example how to implement and set problems
using the geost constraint with choco solver.

2 Example and ways to implement it

Lets first describe a problem and then use it as an example. Consider we have 3 objects o0g, 01, 02
and we want to place them in a box B. Let the 3 objects be as shown in Figure 1. Given that the
placement of the objects should be totally inside B this means that the domains of the origins of
each object are as follows (we start from 0 this means that the placement space is from 0 to 9 on
2 and from 0 to 5 on y):

0p: on x it is from 0 to 6 and on y it is from 0 to 4

10

Object 0

Object 1 1 B
Object 2

Figure 1: 3 objects in dimension 2 and the box B we want to place them in. The first 2 objects
are regular rectangles and the third object is a union between 2 rectangles. This means that the
first two each are made of one shifted box and the third by 2 shifted boxes



01: on z it is from 0 to 7 and on y it is from 0 to 0
09: on z it is from 0 to 7 and on y it is from 4 to 4

Please note that an Object can have many shape (polymorphism). However for the time being
we haven’t implemented this feature. The core of the constraint has been built taking care of this
feature this is why the Shapeld variable is an Integer Domain Variable (IntDomainVar) to be
able to specify multiple shapes for the same object. We will see this shortly.
1. Set the Dimension:
To begin implementing this example we first need to specify the dimension K we are working in.
This is done by assigning the dimension to a local variable that we will use later:

int dim = 2;

2. Create the Problem:
After that we create a choco problem:
Problem pb = new Problem();

3. Create the Objects:
Then we start by creating the objects and store them in an array or vector as such:
Vector < Obj > obj = new Vector < Obj > ();

Now we create the first object with objectld 0 and shapeld 0 with the corresponding domain
variables for the origin.

Obj 0 = new Obj(dim);

o0.setObjectId(0);
Now, as we have discussed above, to specify the shapeld of the Object we give a IntDomainV ar
however we give the inf value equal to the sup value since the polymorphism feature is not yet
implemented.

IntDomainVar shapeld = pb.makeEnumIntVar(”sid”, 0, 0);

IntDomainVar coords|] = new IntDomainV ar|dim];

coords|0] = pb.make EnumIntVar(”z”, 0, 6); //Domain of the x coordinate

coords[l] = pb.make EnumlIntVar(”y”, 0, 4); //Domain of the y coordinate

o.setCoordinates(coords);

o.setShapeld(shapeld);

4. Create the temporal attributes:
Now before adding our object to the Vector obj we need to specify 3 more Integer Domain Vari-
ables which for the current implementation of geost are not working, however we need to give
them dummy values.

o.setStart(pb.make EnumIntVar(” start”, 1, 1));

o.set End(pb.make EnumlIntVar("end”, 1, 1));

o.set Duration(pb.make EnumIntVar(” duration”, 1, 1));

5. Add the Object:
Now we are ready to add the object 0 to our obj Vector
obj.add(o);

6. Create the Shifted Boxes of the Object:

As you may have noticed we haven’t specified the size of the rectangle but only the domain of its

origin. This will come later when we specify the shifted box that correspond to the shape of this

object. Now we do the same for the other 2 object 01 and 02 and add them to our obj vector.

To create the shapes and their shifted boxes we create the shifted boxes and associate them with

the corresponding shapeld. This is done as follows, first we create a Vector called sb for example
Vector < ShiftedBox > sb = new Vector < ShiftedBox > ();



To create the shifted box for the shape 0 (that corresponds to object 0) we create 2 arrays one for
the sizes of the box on each dimension and one to specify the offset of the box on each dimension.
int]] sizes = {4,2};
int]] of fset = {0,0}; //There is no offset since the origin of the object is the same as the
origin of the shifted box.

7. Add the Shifted Boxes:
Now we add our shifted box to the sb Vector

sb.add(new ShiftedBox(0, of fset, sizes)); //where the 0 in the creation of the shiftedBox
object corresponding to the shapeld that this shiftedBox belongs to.

To create a shape which has more than one shifted box we just create a shiftedBox object for
each box it has and assign the same shapeld to all of them taking care of the offset as well. for
example to create the shape for Object 2 we do the following:

int|] sizesl = {3,1};

int]] of fsetl ={0,0}

int[] sizes2 = {1,5};

int[] of fset2 = {2, —4};

sb.add(new ShiftedBox (2, of fsetl, sizesl)) //where the 2 in the creation of the shiftedBox
object correspond to the shapeld that this shiftedBox belongs to.

sb.add(new ShiftedBox(2, of fset2, sizes2))
8. Create the constraints:
Now to create the constraint we first create an array containing all the dimensions the constraint
will be active in (in our example it is all dimensions) and lets name this array ectr Dim. Then we
create a list of objects that this constraint will apply to (in our example it is all objects). After
that we add the constraint to a vector ectr that contains all the constraints we want to add. The
code for these two steps is as follows:

Vector < ExternalConstraint > ectr = new Vector < ExternalConstraint > ();;

int]] ectr Dim = new int[dim];

for(i=0; i < dim; i+ +)

ectrDiml[i] = i;
int[] objO f Ectr = new int[obj.size()];
for(i =0; i < obj.size(); i + +)
objO fEctr|i] = obj.element At(i).getObjectId();

All we need to do now is create the nonOverlapping constraint and add it to the ectr vector

that holds all the constraints. this is done as follows:
NonOwverlapping n = new NonQuerlapping(Constants. NON_OVERLAPPING, ectr Dim, objO f Ectr);
ectr.add(n);

Note that we can specify only a subset of dimensions where the constraint becomes active as
well as we can specify a subset of objects that are constrained by the constraint. For example say
we are working in dimension k = 6, meaning Constants.DIM = 6. And say we have 4 objects A,
B, C' and D with object ids 1, 2 , 3 and 4 respectiively . We want an NonOverlapping constraint
for A and B but only in dimensions 1, 4 and 5 also we want an NonOverlapping constraint for C
and D but only in dimensions 1 and 2. To do that we just add 2 constraints to the Setup object
each constraint with the correct parameters, as follows:
int[] ectrDiml = new int[]{1,4,5}; //Create the first list of dimensions
int[] objO f Ectrl = new int[]{1,2}; //Create the first list of objects
NonOwverlapping nl = new NonOverlapping(Constants. NON_OVERLAPPING, ectr Diml1, 0bjO f Ectrl);
Now we create the second constraint:
int[] ectr Dim2 = new int[]{1,2}; //Create the first list of dimensions
int[] objO f Ectrl = new int[]{3,4}; //Create the first list of objects
NonOwverlapping n2 = new NonOverlapping(Constants. NON_OVERLAPPING, ectr Dim2, 0bjO f Ectr2);



Now we just add the constraints created to the textbfectr vector:

ectr.add(nl);

ectr.add(n2);
10. post the Geost Constraint:
We are almost done, we create the Array of Variables vars to make choco happy (just take a
look at the GeostTest.java example in the code) and then post the geost constraint to the choco
problem as follows:

pb.post(new Geost_Constraint(vars, dim, obj, sb, ectr));



The Following is a Java example, this file can be found in the global package of the geost source code.

In this class | prepare 4 types of ways to use goest and give ccode to show how to do this.

The First way shows how to setup geost to read from a text file a problem.

The second way shows how to create a custom problem from class using java code.

The third way shows how to generate random problems and solve them. Please note that the power of the random generator is very limited

The fourth way shows how to post multiple geost constraints to the same choco problem.

Finally, | created a function called solve that is a bit generic. This is totally however | just wanted to seperate the solving related instructions from the
example code.

package global;
import java.util.Vector;

import geometricPrim.Obj;
import geometricPrim.ShiftedBox;
import global.VRMLwriter;

import choco.Problem;

import choco.integer.IntDomainVar;

import externalConstraints.ExternalConstraint;
import externalConstraints.NonOverlapping;
import global.Constants;

import global.Geost_Constraint;

import global.InputParser;

import global.MyVarSelector;

import global.RandomProblemGenerator;
import global.SolutionTester;

I
In the example | have implemented a function called solve just to make things consistent.
We can not use it of course and just say pb.solve().

What the local solve method does is that it takes care of whether we want to solve for
the first solution only or for all solutions according to the mode variable.

Also it manages the writing of vrmlFiles for visualization and the test of solutions of
different geost constraints posted to the same choco problem.

*/

public class GeostTest {

int dim;
int mode;
public static void main(String[] args) {

/lthe parameters are dimension and runMode respectively,
/Isee constructor for details
GeostTest gt = new GeostTest(3, 1);

¥

public GeostTest(int dim, int mode)

{
/[The dim parameter is to specidy the dimension of the problem.
/[The mode parameter represents the run mode of the solver,
/0 is to solve for all solution and 1 to solve for the first
/Isolution
this.dim = dim;
this.mode = mode;

¥

public boolean Use_GEOST_From_Text_File(String inputFileName)

Vector<Geost_Constraint> g = new Vector<Geost_Constraint>();
//If the input is a text file similar to the input.txt
/[Create the InputParser and parse the input file
InputParser parser = new InputParser(inputFileName, this.dim);
try{

parser.parse();
} catch (Exception e) {

/I TODO Auto-generated catch block

e.printStackTrace();

}

//get the problem from the InputParser object
Problem pb = parser.getProblem();

/lcreate a vector to hold in it all the external constraints
/lwe want to add to geost
Vector<ExternalConstraint> ectr = new Vector<ExternalConstraint>();

T Create the needed external constraints/////11111111

/ffirst of all create a array of intergers containing all the
/ldimensions where the constraint will be active
int[] ectrDim = new int[this.dim];
for (inti = 0; i < this.dim; i++)
ectrDim[i] = i;

/[Create an array of object ids representing all the objects that the



/lexternal constraint will be applied to
int[] objOfEctr = new int[parser.getObjects().size()];
for(int i = 0; i < parser.getObjects().size(); i++)

objOfEctr[i] = parser.getObjects().elementAt(i).getObjectld();
}

/[Create the external constraint, in our case it is the

/INonOverlapping constraint (it is the only one

/limplemented for now)

NonOverlapping n = new
NonOverlapping(Constants.NON_OVERLAPPING, ectrDim, objOfEctr);

/ladd the created external constraint to the vector we created
ectr.add(n);

[lllllICreate the array of variables to make choco happy!/////i/

/Ivars will be stored as follows:

/I object 1 coords(so k coordinates), sid, start, duration, end,

/I object 2 coords(so k coordinates), sid, start, duration, end,

/I and soon..

/[To retrieve the index of a certain variable, the formula is

/I(nb of the object in question = objld assuming objlds are
/lconsecutive and start from 0) * (k + 4) + number of the variable
/lwanted the number of the variable wanted is decided

/las follows: O ... k-1 (the coords), k (the sid), k+1 (start),

Vi k+2 (duration), k+3 (end)

//Number of domain variables to represent the origin of all objects

int originOfObjects = parser.getObjects().size() * this.dim;

/leach object has 4 other variables: shapeld, start, duration; end

int otherVariables = parser.getObjects().size() * 4;

IntDomainVar[] vars = new IntDomainVar[originOfObjects +
otherVariables];

for(int i = O; i < parser.getObjects().size(); i++)
{

for (intj = 0; j < this.dim; j++)

vars[(i * (this.dim + 4)) + ] =
parser.getObjects().elementAt(i).getCoord(j);

}

vars[(i * (this.dim + 4)) + this.dim] =
parser.getObjects().elementAt(i).getShapeld();

vars|[(i * (this.dim + 4)) + this.dim + 1] =
parser.getObjects().elementAt(i).getStart();

vars[(i * (this.dim + 4)) + this.dim + 2] =
parser.getObjects().elementAt(i).getDuration();

vars[(i * (this.dim + 4)) + this.dim + 3] =
parser.getObjects().elementAt(i).getEnd();

}

I Create the geost constraint///i/11111

Geost_Constraint geost = new Geost_Constraint
(vars, this.dim, parser.getObjects(),
parser.getShiftedBoxes(), ectr);

/IHITIIAdd the constraint to the choco problem////11
pb.post(geost);

g.add(geost);

solve(pb, g);

return true;

}

public boolean CustomProblem()

{

Vector<Geost_Constraint> g = new Vector<Geost_Constraint>();

int lengths [1 = {5, 3, 2;
int widths[] = {2 ,2 ,1};
int heights[] = {1,1,1};

int nbOfObj = 3;

/lcreate the choco problem
Problem pb = new Problem();

/[Create Objects
Vector<Obj> obj2 = new Vector<Obj>();

for (inti = 0; i < NbOfObj; i++)

{
IntDomainVar shapeld = pb.makeEnumintVar("sid", i, i);
IntDomainVar coords[] = new IntDomainVar[this.dim];
for(int j = 0; j < coords.length; j++)

coords[j] = pb.makeEnumintVar("x" + j, 0, 20);

I
Obj 02 = new Obj(this.dim);



02.setObjectld(i);
02.setCoordinates(coords);
02.setShapeld(shapeld);
02.setStart(pb.makeEnumintVar("start", 1, 1));
02.setEnd(pb.makeEnumintVar("end", 1, 1));
02.setDuration(pb.makeEnumIntVar("duration", 1, 1));
obj2.add(02);

}

/lcreate shiftedboxes and add them to corresponding shapes
Vector<ShiftedBox> sb2 = new Vector<ShiftedBox>();
inth=0;

while(h< nbOfObj)

{
int[] | = {lengths[h], heights[h] ,widths[h]};
int []t=(0, 0, 0};
sb2.add(new ShiftedBox(h,t,1));
h++;
}

/[Create the external constraints vecotr
Vector<ExternalConstraint> ectr2 = new Vector<ExternalConstraint>();
/lcreate the list od dimensions for the external constraint
int[] ectrDim2 = new int[this.dim];
for (intd = 0; d < 3; d++)
ectrDim2[d] = d;

/lcreate the list of object ids for the external constraint
int[] objOfEctr2 = new intfnbOfObj];
for(int d = 0; d < nbOfObj; d++)

objOfEctr2[d] = obj2.elementAt(d).getObjectld();

/lcreate the external constraint of type non overlapping

NonOverlapping n2 = new NonOverlapping
(Constants.NON_OVERLAPPING, ectrDim2, objOfEctr2);

/ladd the external constraint to the vector

ectr2.add(n2);

[lllllICreate the array of variables to make choco happy//////I/

/Ivars will be stored as follows:

/I object 1 coords(so k coordinates), sid, start, duration, end,

/I object 2 coords(so k coordinates), sid, start, duration, end,

/' andsoon..

/[To retrieve the index of a certain variable, the formula is

/l(nb of the object in question = objld assuming objlds are
/lconsecutive and start from 0) * (k + 4) + number of the variable
/lwanted the number of the variable wanted is decided

/las follows: 0 ... k-1 (the coords), k (the sid), k+1 (start),

Vi k+2 (duration), k+3 (end)

//Number of domain variables to represent the origin of all objects

int originOfObjects2 = nbOfObj * this.dim;

/leach object has 4 other variables: shapeld, start, duration; end

int otherVariables2 = nbOfObj * 4;

IntDomainVar[] vars2 = new IntDomainVar[originOfObjects2 +
otherVariables2];

for(int i = 0; i < NbOfObj; i++)
{

for (intj = 0; j < this.dim; j++)

vars2[(i * (this.dim + 4)) + j] =
obj2.elementAt(i).getCoord(j);

}

vars2[(i * (this.dim + 4)) + this.dim] =
obj2.elementAt(i).getShapeld();

vars2[(i * (this.dim + 4)) + this.dim + 1] =
obj2.elementAt(i).getStart();

vars2[(i * (this.dim + 4)) + this.dim + 2] =
obj2.elementAt(i).getDuration();

vars2[(i * (this.dim + 4)) + this.dim + 3] =
obj2.elementAt(i).getEnd();

}

/lcreate the geost constraint object
Geost_Constraint geost2 =

new Geost_Constraint(vars2, this.dim, obj2, sb2, ectr2);
/Ipost the geost constraint to the choco problem
pb.post(geost2);
g.add(geost2);

solve(pb, g);

return true;



}

public void RandomProblemGeneration()

{

}

Vector<Geost_Constraint> g = new Vector<Geost_Constraint>();

/Inb of objects, shapes, shifted boxes and maxLength respectively
/[The nb of Obj should be equal to nb Of shapes for NOW.

/las For the number of the shifted Boxes it should be

/lgreater or equal to the nb of Objects

RandomProblemGenerator rp =
new RandomProblemGenerator(this.dim, 7, 7, 7, 25);
rp.generateProb();

Problem pb = rp.getPb();

Vector<ExternalConstraint> ectr = new Vector<ExternalConstraint>();
int[] ectrDim = new int[this.dim];
for (inti=0; i < this.dim; i++)

ectrDim[i] = i;

int[] objOfEctr = new int[rp.getObjects().size()];
for(int i = 0; i < rp.getObjects().size(); i++)

objOfEctr|i] = rp.getObjects().elementAt(i).getObjectld();

NonOverlapping n = new NonOverlapping
(Constants.NON_OVERLAPPING, ectrDim, objOfEctr);
ectr.add(n);

//Number of domain variables to represent the origin of all objects
int originOfObjects2 =

rp.getObjects().size() * this.dim;
/leach object has 4 other variables: shapeld, start, duration; end
int otherVariables2 = rp.getObjects().size() * 4;
IntDomainVar{] vars3 =

new IntDomainVar[originOfObjects2 + otherVariables2];

for(int i = 0; i < rp.getObjects().size(); i++)
{

for (int j = 0; j < this.dim; j++)

vars3[(i * (this.dim + 4)) + j] =
rp.getObjects().elementAt(i).getCoord(j);

}

vars3[(i * (this.dim + 4)) + this.dim] =
rp.getObjects().elementAt(i).getShapeld();

vars3[(i * (this.dim + 4)) + this.dim + 1] =
rp.getObjects().elementAt(i).getStart();

vars3[(i * (this.dim + 4)) + this.dim + 2] =
rp.getObjects().elementAt(i).getDuration();

vars3[(i * (this.dim + 4)) + this.dim + 3] =
rp.getObjects().elementAt(i).getEnd();

}

Geost_Constraint geost3 =
new Geost_Constraint(vars3, this.dim, rp.getObjects(),
rp.getSBoxes(), ectr);
pb.post(geost3);
g.add(geost3);

I

We could also use functions to write things to files

in two formats. One to be used as input to the parser

and one to be used for humans to read.

geost3.getStp().printToFilelnputFormat
("PathToTheOutput_Input.txt");

geost3.getStp().printToFileHumanFormat
("PathToTheOutput_Human.txt");

*/

solve(pb, g);

public void MultipleGeostConstraintsinSameProblem()

{

Vector<Geost_Constraint> g =

new Vector<Geost_Constraint>();
/[This example is to show how to give to the same choco problem
/I2 different geost constraints.

HHHTTITIITHE FIRST PROBLEMY/ITTTTITTTIIT

//If the input is a text file similar to the input.txt

/[Create the InputParser and parse the input file

InputParser parser = new InputParser
("/Users/ridasadek/Documents/geostinOutFiles/input3D.txt",
this.dim);

try{



parser.parse();
} catch (Exception e) {
e.printStackTrace();
}

//get the problem from the InputParser object
Problem pb = parser.getProblem();

/lcreate a vector to hold in it all the external constraints
/lwe want to add to geost
Vector<ExternalConstraint> ectr =

new Vector<ExternalConstraint>();

N Create the needed external constraints////111/11

/ffirst of all create a array of intergers containing all
/lthe dimensions where the constraint will be active
int[] ectrDim = new int[this.dim];
for (inti = 0; i < this.dim; i++)

ectrDim[i] = i;

/[Create an array of object ids representing all the objects
/Ithat the external constraint will be applied to

int[] objOfEctr = new int[parser.getObjects().size()];

for(int i = 0; i < parser.getObjects().size(); i++)

objOfEctr[i] = parser.getObjects().elementAt(i).getObjectld();

/ICreate the external constraint, in our case it is the

//INonOverlapping constraint (it is the only one implemented for now)

NonOverlapping n = new NonOverlapping
(Constants.NON_OVERLAPPING, ectrDim, objOfEctr);

//add the created external constraint to the vector we created
ectr.add(n);

IllillICreate the array of variables to make choco happy////l/

//See the above examples to understand how this
/larray of variables is created
int originOfObjects =
parser.getObjects().size() * this.dim;
int otherVariables =
parser.getObjects().size() * 4;
IntDomainVar(] vars =
new IntDomainVar[originOfObjects + otherVariables];

for(int i = 0; i < parser.getObjects().size(); i++)
{
for (intj = 0; j < this.dim; j++)
{
vars[(i * (this.dim + 4)) + j] =
parser.getObjects().elementAt(i).getCoord(j);

vars[(i * (this.dim + 4)) + this.dim] =
parser.getObjects().elementAt(i).getShapeld();

vars[(i * (this.dim + 4)) + this.dim + 1] =
parser.getObjects().elementAt(i).getStart();

vars[(i * (this.dim + 4)) + this.dim + 2] =
parser.getObjects().elementAt(i).getDuration();

vars[(i * (this.dim + 4)) + this.dim + 3] =
parser.getObjects().elementAt(i).getEnd();

}

I Create the geost constraint///iTTTHTHTTTIIT
Geost_Constraint geost =
new Geost_Constraint(vars, this.dim, parser.getObjects(),
parser.getShiftedBoxes(), ectr);

HIHTHHTTITAdd the constraint to the choco problem///i1THTT T
pb.post(geost);

g.add(geost);

HHHHHninImHE SECOND PROBLEMYITTTTITIITT

int lengths [] = {5, 3, 2};

int widths[] ={2,2 ,1};

int heights[] ={1,1,1};

int nbOfObj = 3;

/[Create Objects
Vector<Obj> obj2 = new Vector<Obj>();

for (int i = 0; i < NbOfObj; i++)
IntDomainVar shapeld = pb.makeEnumintVar("sid", i, i);

IntDomainVar coords[] = new IntDomainVar[this.dim];
for(int j = 0; j < coords.length; j++)



coords[j] = pb.makeEnumintVar("x" + j, 3, 20);

}
Obj 02 = new Obj(this.dim);
02.setObjectld(i);
02.setCoordinates(coords);
02.setShapeld(shapeld);
02.setStart(pb.makeEnumintVar("start", 1, 1));
02.setEnd(pb.makeEnumintVar("end", 1, 1));
02.setDuration(pb.makeEnumintVar("duration", 1, 1));
obj2.add(02);

}

/lcreate shiftedboxes and add them to corresponding shapes
Vector<ShiftedBox> sb2 = new Vector<ShiftedBox>();
inth=0;

while(h< nbOfObj)

int]] I = {lengths[h], heights[h] ,widthsh]};
int[]t={0, 0, O};

sb2.add(new ShiftedBox(h,t,1));
h++;

}

Vector<ExternalConstraint> ectr2 =
new Vector<ExternalConstraint>();
int[] ectrDim2 = new int[this.dim];
for (intd = 0; d < 3; d++)
ectrDim2[d] = d;

int[] objOfEctr2 = new intfnbOfObj];
for(int d = 0; d < nbOfObj; d++)

objOfEctr2[d] = obj2.elementAt(d).getObjectld();

NonOverlapping n2 = new NonOverlapping
(Constants.NON_OVERLAPPING, ectrDim2, objOfEctr2);
ectr2.add(n2);

//See the above examples to understand how this
/larray of variables is created
int originOfObjects2 = nbOfObj * this.dim;
int otherVariables2 = nbOfObj * 4;
IntDomainVar[] vars2 =
new IntDomainVar[originOfObjects2 + otherVariables2];

for(int i = 0; i < nbOfObyj; i++)
{

for (int j = 0; j < this.dim; j++)

vars2[(i * (this.dim + 4)) + j] =
obj2.elementAt(i).getCoord(j);
}
vars2[(i * (this.dim + 4)) + this.dim] =
obj2.elementAt(i).getShapeld();
vars2[(i * (this.dim + 4)) + this.dim + 1] =
obj2.elementAt(i).getStart();
vars2[(i * (this.dim + 4)) + this.dim + 2] =
obj2.elementAt(i).getDuration();
vars2[(i * (this.dim + 4)) + this.dim + 3] =
obj2.elementAt(i).getEnd();

Geost_Constraint geost2 =

new Geost_Constraint(vars2, this.dim, obj2, sb2, ectr2);
pb.post(geost2);
g.add(geost2);

solve(pb, g);
}

private boolean solve(Problem pb, Vector<Geost_Constraint> g)

//Iif needed to test whether the solution is correct (for
//non overlapping in all dimensons and all objects)
Vector<SolutionTester> tester = new Vector<SolutionTester>();
for(int i = 0; i< g.size(); i++)

SolutionTester s =
new SolutionTester(g.elementAt(i).getStp(),
g.elementAt(i).getCst());
tester.add(s);

}

//Still need to modify the MyVarSelector to handle
//all the added geost constraints variables.
if (g.size() == 1)
pb.getSolver().setVarSelector(new MyVarSelector
(g.elementAt(0).getStp(),



if(this.mode == 0)
{

/ffor all solutions

g.elementAt(0).getCst()));

System.out.printin("Getting all Solutions ...");

//solve

if (pb.solve() == Boolean. TRUE) {

do{

if(pb.isCompletelyInstantiated())
{

for(inti = 0; i < g.size(); i++)

{

}

if('tester.elementAt(i).testSolution())

else

{

System.err.printin("Wrong Solution found");
return false;

//Specify the vrml output folder, meaning

/lthe folder we will be writing

/ithe vrml file to

g.elementAt(i).getCst().setVRML_OUTPUT_FOLDER
("PathToOutputVrmIFolder");

/hwrite the vrml file ".wrl" so that we can

/Ivisualize it later if we want to

VRMLwriter.printVRML3D(g.elementAt(i).getStp(),
g.elementAt(i).getCst(),"solution"+i,
pb.getSolver().getNbSolutions());

} while(pb.nextSolution() == Boolean. TRUE);

else if(this.mode == 1)

{

/ffor the first solution

System.out.printin("Getting first Solution ...");

//solve
pb.solve();

for(inti = 0; i < g.size(); i++)

{

//Specify the vrml output folder, meaning the

/ffolder we will be riting the vrml file to

g.elementAt(i).getCst().setVRML_OUTPUT_FOLDER
("PathToOutputVrmIFolder");

/hwrite the vrml file ".wrl" so that we package global;

/lcan visualize it later if we want to

VRMLwriter.printVRML3D(g.elementAt(i).getStp(),

g.elementAt(i).getCst(),"solution", i);
/ltest the solution
if(tester.elementAt(i).testSolution())

System.err.printin("Wrong Solution foud");
return false;

}

else

System.out.printin(tester.elementAt(i).testSolution());
/lprint the solution to a file easily read by humans
g.elementAt(i).getStp().printToFileHumanFormat

("PathToFileOutput");

}
System.out.printin("NbSol: " + pb.getSolver().getNbSolutions());

return true;



Part C: SICStus documentation of geost
SICS
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ex([01,Y1a,Y1b,Y1c,
02,Y2a,Y2b,Y2c,Y2d,
03,Y3a,Y3b,Y3c,Y3d,
04,Y4a,Y4b,Y4c],

Synch) :-
domain([Y1la,Y1b,Yic,
Y2a,Y2b,Y2c,Y2d,
Y3a,Y3b,Y3c,Y3d,
Y4a,Y4b,Y4c]l, 1, 5),
01 in 1..28,
02 in 1..26,
03 in 1..22,
04 in 1..25,
disjoint2([t(1,1,5,1), £(20,4,5,1),
t(1,1,4,1), t(14,4,4,1),
t(1,2,3,1), t(24,2,3,1),
t(1,2,2,1), £(21,1,2,1),
t(1,3,1,1), t(14,2,1,1),

t(01,3,Y1a,1),
t(01,3,Y1b,1),
t(01,3,Y1c,1),
t(02,5,Y2a,1),
t(02,5,Y2b,1),
t(02,5,Y2c,1),
t(02,5,Y24,1),
t(03,9,Y3a,1),
t(03,9,Y3b,1),
t(03,9,Y3c,1),
£(03,9,Y3d,1),
t(04,6,Y4a,1),
t(04,6,Y4b,1),
t(04,6,Y4c, 1)1,
[synchronization(Synch)]).

The file library(’clpfd/examples/squares.pl’) contains an example where
disjoint2/2 is used for tiling squares.

geost (+0bjects,+Shapes)

geost (+0bjects,+Shapes,+0ptions)
constrains the location in space of non-overlapping multi-dimensional Objects,
each of which taking a shape among a set of Shapes.

Each shape is defined as a finite set of shifted boxes, where each shifted box is
described by a box in a k-dimensional space at the given offset with the given
sizes. A shifted box is described by a ground term sbox(Sid,0ffset,Size)
where Sid, an integer, is the shape id; Offset, a list of k integers, denotes the
offset of the shifted box from the origin of the object; and Size, a list of k
integers greater than zero, denotes the size of the shifted box. Then, a shape
is a collection of shifted boxes all sharing the same shape id. Note that the
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shifted boxes associated with a given shape may or may not overlap. Shapes is
thus the list of such sbox/3 terms.

Each object is described by a term object(0id,Sid,Origin where Oid, an
integer, is the unique object id; Sid, an integer or domain variable, is the shape
id; and Origin, a list of integers or domain variables, is the origin coordinate
of the object. If Sid is nonground, the object is said to be polymorphic. The
possible valies for Sid are the shape ids that occur in Shapes. Objects is thus
the list of such object/3 terms.

Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

lex(Boolean)
If true, for any two objects O1 and O2 such that they have the
same shape id and O1 occurs before O2 in Objects, the origin
coordinate of O1 is constrained to be lexicographically less than or
equal to the origin coordinate of O2.

cumulative (Boolean)
If true, redundant reasoning methods are enabled, based on pro-
jecting the objects onto each dimension.

longest_hole(Boolean)
If true, the filtering algorithm computes and uses information
about holes that can be tolerated without necessarily failing the
constraint.

parconflict(Boolean)
If true, redundant reasoning methods are enabled, based on com-
puting the number of items that can be put in parallel in the dif-
ferent dimensions.

visavis(Boolean)
If true, a redundant method is enabled that dynamically detect
holes that will necessarily fail the constraint.

corners (Boolean)
If true, a redundant method is enabled that reasons in terms on
borders that impinge on the corners of objects. This method has
not been shown to pay off experimentally.

task_intervals(Boolean)
If true, a redundant reasoning method is enabled that detects over-
crowded and undercrowded regions of the placement space. This
method has not been shown to pay off experimentally.

dynamic_programming(Boolean)
If true, a redundant reasoning method is enabled that solves a
knapsack problem for each column of the projection of the objects
onto each dimension. This method has pseudo-polynomial com-
plexity but can be quite powerful.
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polymorphism(Boolean)
If true, a reasoning method is enabled that is relevant in the con-
text of polymorphic objects and no slack. The method detects
parts of the placement space that cannot be filled and thus fails
the constraint.

fixall(Flag,Patterns)

If given, Flag is an integer or domain variable in 0..1. If Flag
equals 1, either initially or by binding Flag during search, the con-
straint switches behavior into greedy assignment mode. The greedy
assignment will either succeed and assign all shape ids and origin
coordinates to values that satisfy the constraint, or merely fail. Flag
is never bound by the constraint; its sole function is to control the
behavior of the constraint.

Greedy assignment is done one object at a time, in the order of
Objects. The assignment per object is controlled by Patterns,
which should be a list of one or more pattern terms of the form
object(_,SidSpec,0riginSpec), where SidSpec is a term min(I)
or max(I), OriginSpec is a list of k such terms, and [ is a unique
integer between 1 and k+1.

The meaning of the pattern is as follows. The variable in the posi-
tion of min(1) or max (1) is fixed first; the variable in the position
of min(2) or max(2) is fixed second; and so on. min(I) means
trying values in ascending order; max(I) means descending order.

If Patterns contains m pattern, then object 1 is fixed according to
pattern 1, . .., object m is fixed according to pattern m, object m+1
is fixed according to pattern 1, and so on. For example, suppose
that the following option is given:

fixall(F, [object(_,min(1), [min(3),max(2)]),
object(_,max (1), [min(2) ,max(3)1)1)

Then, if the program binds F to 1, the constraint enters greedy
assignment mode and endeavors to fix all objects as follows.

e For object 1, 3, ..., (a) the shape is fixed to the smallest pos-
sible value, (b) the Y coordinate is fixed to the largest possible
value, (¢) the X coordinate is fixed to the smallest possible
value.

e Forobject 2,4, .. ., (a) the shape is fixed to the largest possible
value, (b) the X coordinate is fixed to the smallest possible
value, (c¢) the Y coordinate is fixed to the largest possible value.

Suppose that you have a placement problem where you are only interested in finding out
whether a solution exists or not, and what that solution is. Then the search space can be re-
duced by domination constraints, i.e. constraints that rule out solutions that are dominated
by some other solution, with a guarantee that not all solutions are ruled out. The following
auxiliary predicates will post domination constraints that are valid for 2-dimensional place-
ment problem modelled with geost/[2,3] where each object consists of a single rectangle,
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and the origin coordinates are completely unrestrained within the problem’s placement
space.

Suppose in particular that you want to find the smallest rectangle in which a given set
of rectangles can be packed without overlap. This typically leads to solving a series of
subproblems with non-decreasing size of the placement space. In this scenario, a heavy
computation can be factored out of the computation of domination constraints and be done
once for the whole series. For this reason, we provide two prediactes: geost_domination_
data/3, which performs a heavy, factorable computation, and geost_domination_post/4,
which uses the output of the former and posts the actual domination constraints.

geost_domination_data(+Sizes, [+MaxX,+MaxY], -Data)
Sizes is a list of pairs [Length,Height] of rectangles that will be used in a
2-dimensional placement problem, or in a series of such problems. MaxX and
MaxY resp. are the maximum length resp. height of the placement space of the
problem or series of problems. Data is unified with a term suitable for passing
to geost_domination_post/4.

geost_domination_post(+0rigins, +Sizes, [+MaxX,+MaxY], +Data)
Origins is a list of pairs [X,Y] of origin coordinates of the objects of a 2-
dimensional placement problem. Sizes is a list of pairs [Length,Height] of the
corresponding rectangles, in the same order. MaxX and MaxY resp. are the
length resp. height of the placement space of the problem. Data is a term passed
from geost_domination_data/3. This predicate posts domination constraints,
as explained above.

The following constraints express the fact that several vectors of domain variables are in
ascending lexicographic order:

lex_chain(+Vectors)

lex_chain(+Vectors,+0Options)
where Vectors is a list of vectors (lists) of domain variables with finite bounds or
integers. The constraint holds if Vectors are in ascending lexicographic order.

Options is a list of zero or more of the following:

op(0p) If Op is the atom #=< (the default), the constraints holds if Vectors
are in non-descending lexicographic order. If Op is the atom #<, the
constraints holds if Vectors are in strictly ascending lexicographic
order.

increasing
This option imposes the additional constraint that each vector in
Vectors be sorted in strictly ascending order.

among(Least,Most,Values)
If given, Least and Most should be integers such that 0 < Least <
Most and Values should be a list of distinct integers. This option
imposes the additional constraint on each vector in Vectors that at
least Least and at most Most elements belong to Values.



Part D: Exploitation of geost
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1 Impacts and concrete utilisation

1.1. Academics

KLS OPTIM gives industrial constraint programming lectures to academics mainly for high
engineering schools or in the last year of the LMD cycle. The objectives of the course are:
* Introduction of the constraint programming system Choco.
* Introduction of novel modelling techniques of combinatorial industrial problems.
* Modelling of scheduling and assignment problems in production.
* Modelling of packing problems using global constraints developed in the context of
Net-WMS project.

Durations of lectures range from 2 hours to 3 hours.
1.2 Research

KLS OPTIM works with other research teams on combinatorial problems. All research and
prototypes are developed with the constraint programming system Choco.

1.3 KLS OPTIM

KLS OPTIM uses the constraint programming system Choco to develop business
components. KLS OPTIM and EMN teams put a lot of synergy in the Choco project. KLS
OPTIM provides expertise, requirements and recommendations of developments of new
constraints to enrich the Choco system. All the implementations are carried on by EMN. KLS
OPTIM decides to put more supports by maintaining a release and building a library of tests
to automate the test phase when Choco is enriched with new constraints or when new
improvements are made available.

The figure below shows the architecture and the expected results of the Net-WMS project.
This section deals with the palletizer business component. The solvers of the business
components are developed completely in Java using the constraint programming Choco
system. The important contribution of the Net-WMS is the global constraint Geost. The basic
version is used by KLS OPTIM and some of the components are deployed in the industry.
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Figure 1: Innovative Net-WMS J2EE architecture

In the context of the Net-WMS project, KLS OPTIM is developing two business components

Optim Pallet: The palletizer takes as input a set of cartons or conditionings, a set of

parameters and directives. It produces a set of optimised pallets.

Optim Truck: the system takes as input a set of pallets, a set of parameters and

directives. It produces an optimal loading plan of pallets in trucks.
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Figure 2: Business packing components.

The first versions take of the components takes as input Excel data and produce also Excel
results.

The business packing (Optim Pallet & Optim Truck) components are structured into
components:
* Packing container: the logic of packing. This is the main entry to drive the different
components of the packing module.
* Packing solver: the optimisation; this components takes well defined inputs and
produces results which are then processed by the packing container.
* Packing Player: This is 3D visualisation of containers and items of the container.

Select all orders with the same
No model of container

Are all orders
packed?

\/

l Yes

Figure 3: Multiple steps of the Packing Solver of KLS OPTIM

The coming versions will take in addition XML inputs and produce XML results.

A new version of the business components is planned for year 2 of the project. The business
components will benefit from the new features which are mainly the polymorphism in Geost;
which is the capability to choose between several shapes.
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Informations

Bin information

Bin command reference : cmd
Standard : Yes

Bin size {(mm) : (12000 x 2330 x 2350)
Bin tare weight : 0

Binweight (kg) : 6.81

Bin volume (m3) : 65.706

Bin used volume (m3) : 53 54368

Bin used volume rate (%) : 81489764
Bin item number : 23

Figure 6: KLS OPTIM 3D Player — Bin information

1.4 End users

KLS OPTIM deployed the first version of the palletizer in an international distribution
company; a client of KLS OPTIM which contributes to the requirement definitions and testing
phase. In returns, the company had special conditions as defined in the Net-WMS project.

Significant improvements are measured:
* Packing around 100 conditionings (cartons) in less than 1 minute.
* Significant improvements for large orders (up to 20%).
* The total packing tasks takes less than 15 minutes for the system whilst it requires a
full day for an operator.



